SCIENCE EDUCATION

New Programs

A Science Resources Planning Office has recently been established by the National Science Foundation to coordinate studies of the nation's future resources and needs for scientific research and education. The office will be headed by Richard H. Bolt, who has also been appointed by the Foundation to the newly created position of associate director for planning. Dr. Bolt has been on leave from his post as professor of acoustics at the Massachusetts Institute of Technology during the past two years while serving as NSF's associate director for research.

The new planning office, in cooperation with educational institutions, industrial organizations, and government agencies, will collect and analyze data on scientific manpower, facilities, equipment, publications, etc., for the information of those responsible for forming policy and making decisions. It will, in particular, be responsive to the needs of the Federal Council for Science and Technology, and of the office of the President's special assistant for science and technology.

Another recent action of the Science Foundation is the inauguration of a program to provide assistance to educational institutions in acquiring laboratory and demonstration equipment for undergraduate science instruction. Colleges and universities which grant baccalaureate degrees in the sciences may request NSF grants for the purchase of equipment. Proposals may not exceed \$25 000, and all grants will be made on a matching basis (i.e., 50 percent of the total costs incurred must be obtained from sources other than the federal government).

In announcing the program, the Foundation noted that many schools have found it difficult to replace or improve instructional equipment, partly because of diminishing income from fixed endowment funds, coupled with the costs associated with rising enrollments and the necessity for increasing faculty salaries. A recent NSF survey of college science departments indicates that more than \$190 million will be required for such equipment in 1962–63.

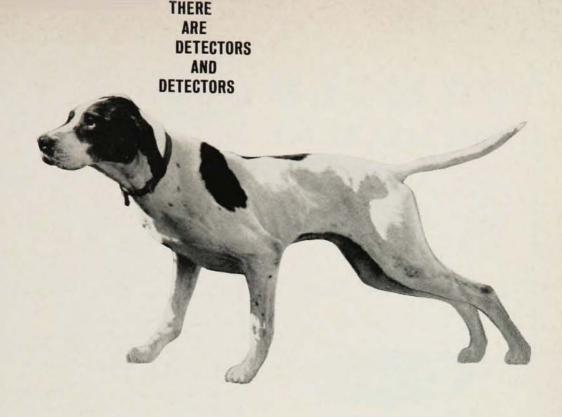
Special recognition will be given to outstanding high-school physics teachers under a program initiated by the American Association of Physics Teachers and supported by a three-year grant of \$67 000 from the Carnegie Corporation of New York. Teachers with at least three years' experience in high-school instruction will be eligible to participate. Specially prepared examinations will test their competence in the subject matter of physics, and those who excel will be recognized by the award of a suitable certificate.

J. W. Buchta, associate dean of the College of Science, Literature, and the Arts of the University of

Minnesota, is chairman of the AAPT Committee on Teacher Recognition, which is administering the program. According to Dean Buchta, the recognition program is intended to encourage those teachers who strive to improve their knowledge of physics and their competence to teach. "The sponsors of this program fully realize that high competence in subject matter does not guarantee a master teacher," he stated, "but we believe there is a high correlation between mastery of subject taught and mastery of the art of teaching the subject."

Radioisotope Training

The first of a series of engineering drawings from which demonstration equipment for training in radio-isotope engineering may be built have been made available by the Atomic Energy Commission. The project is part of a continuing educational program in isotope technology conducted by the AEC's Office of Isotopes Development, and the training kits are intended to aid educational institutions and training laboratories that wish to include laboratory isotope training in their curricula but find the specifications, cost, and size limits of commercial instruments prohibitive.

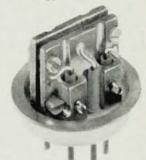

Twelve packages of drawings have been announced, of which six are listed under the category of radiochemical instrumentation, four under that of industrial gauging, and two for equipment employed in research and process analyses.

In some cases, instrument components are interchangeable for various demonstrations, thus resulting in a reduction in construction cost. The instruments developed under the project, according to the AEC, are being tested and evaluated at several universities and training laboratories. A list of the various sets of drawings is contained in Supplements 13 and 14 of the catalog *Engineering Materials List* (TID-4100), which is available without charge from the Office of Technical Information Extension, P. O. Box 62, Oak Ridge, Tenn.

Fellowships

Applications are now being accepted by the Oak Ridge Institute of Nuclear Studies for three categories of Atomic Energy Commission special fellowships to be awarded in 1962.

January 5 is the deadline for receipt of applications for graduate fellowships in nuclear science and engineering for study at any of 56 selected institutions. Applicants should be graduates in either physics, chemistry, mathematics, or engineering. Further information and application materials can be obtained from the



Solid State Radiations, Inc. offers a completely new integrated system for neutron spectroscopy to the field of neutron and reactor physics. The SSR Semiconductor Epithermal Neutron Spectrometer measures the neutron energy spectrum directly. The neutron spectrometer detector is made by sandwiching a thin layer of Li6 metal between two semiconductor detectors. The alpha and triton particles resulting from the Li⁶ (n, α) H³ reaction deposit their energy in the two detectors. The total shared energy of these particles is summed electronically, and the amplitude of the summed pulse is linearly related to the incident neutron energy.

FEATURES

- Measures differential energy spectrum directly.
- Linear output in the range of .5 to 15 Mev.
- Hermetically sealed Guard Ring semiconductor detector unit in an aluminum case insures low noise and reliability.
- Separate amplifiers to optimize both resolution and coincidence time.
- Coincidence gate is not in the signal path and cannot interfere with the signal amplitude.
- Summing circuit eliminates the need for balancing separate detector signals.
- A transistorized biased post amplifier with variable input time constants is available and may be incorporated as an optional feature.

Solid State Radiations has a complete line of charged particle detectors, neutron detectors, lithium drift detectors, P-I-N detectors, vacuum spectrometry system, transistorized and vacuum tube preamplifiers, scalers and data handling equipment for scientific, industrial and medical applications. For detailed information and assistance with your problems in these areas, write to:

WANTED:

MORE MEN LIKE YOU

The scarcity of physicists has created many exceptional career opportunities at leading research laboratories and industrial organizations.

If you are a qualified physicist Abbott's can direct you to the most attractive employment opportunities. In the past 37 years, Abbott's has established a close rapport with many of the foremost research groups. Their confidence in Abbott's ability to match the right man to the job requirements is a definite plus factor when your qualifications are presented.

All service charges are paid by our client organizations. All negotiations conducted in strict confidence.

> Address your inquiry to: Mr. J. Edward Beauregard Dept. A

EMPLOYMENT SPECIALISTS
150 Tremont Street
Boston, Massachusetts
HAncock 6-8400

NEW SHIPMENT 24"

PARABOLIC REFLECTOR

Currently being used in 7 foreign countries, American colleges, scientific laboratories for numerous applications. Users on request. Focal length 9-11/16 inches. Optically ground and distortion free. Excellent for solar furnace and microwave work. Manufactured by Bausch & Lomb and Crysler Corp. of Haynes Stellite Alloy 23 (Cobalt, 67%; Chromium, 24%; Tungsten, 6%; Nickel, 2%; Iron, 1%) Reflectivity, 83%. Weight, 27 to 30 pounds. New, in original containers. Replacement cost, \$1,500.00. Indestructible.

Air freight ppd. in U.S. only \$275.00 WALKER METAL CO.

20413 Lichfield Road

Detroit 21 Michigan

NSE Fellowship Office, Oak Ridge Institute of Nuclear Studies, P.O. Box 117, Oak Ridge, Tenn.

Special fellowships in health physics are available to graduates in biology, chemistry, engineering, and physics. Fellows study for nine months at one of eight selected universities and then do three months' field work at an AEC national laboratory. The deadline for applying is February 1. For further information, write to the Health Physics Fellowship Office, Oak Ridge Institute of Nuclear Studies, P.O. Box 117, Oak Ridge, Tenn.

Graduates in chemistry, engineering, or physics may also apply (before March 1) for special fellowships in industrial hygiene. Studies may be undertaken at one of five selected universities having graduate programs in industrial hygiene. Correspondence should be sent to the Industrial Hygiene Fellowship Office, Oak Ridge Institute of Nuclear Studies, P.O. Box 117, Oak Ridge, Tenn.

Several hundred NSF summer fellowships for secondary-school teachers will be awarded in 1962 for graduate-level studies in science and mathematics. Information and application forms can be obtained by writing to Secondary-School Fellowships, American Association for the Advancement of Science, 1515 Massachusetts Avenue, N.W., Washington 5, D. C. The qualifications of applicants will be evaluated by panels of scientists appointed by the AAAS, which administers the program. Applications must be returned to the Association by January 5, 1962; those accepted as fellows will be notified by March 15.

January 5 is also the last day on which applications will be accepted for OECD senior visiting fellowships for study abroad. About twenty US citizens or nationals will receive awards under the program, which is sponsored by the Organization for Economic Cooperation and Development and is administered in the United States by the National Science Foundation. The awards permit study in most scientific fields and are designed to assist public or nonprofit scientific and technical institutions in sending senior staff members abroad to study new techniques and developments at advanced research and educational institutions. Such study is expected to take place primarily in countries which are members of the OECD or are cooperating with it; they are Austria, Belgium, Canada, Denmark, France, the Federal Republic of Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Switzerland, Turkey, the United Kingdom, and Yugoslavia. Tenure will usually be for periods between eight weeks and six months, although in exceptional cases a maximum period of one year may be approved.

Applications will be evaluated for the NSF by panels of scientists appointed by the National Academy of Sciences. Detailed information and application forms can be obtained from the NAS-NRC Fellowship Office, 2101 Constitution Avenue, N.W., Washington 25, D. C. Awards will be announced on April 16.