PHYSICISTS OPTICS This major electronics

research and development
company has an opening
for a scientist with a PhD
degree plus 5 years'
experience as a
professional
experimentalist.

Experience must be in a field dealing with atoms (not nuclei). Duties involve research on new optical masers working with a small research group with full facilities and capabilities for original research projects.

Qualified scientists are invited to phone collect (ROgers 9-5000) or write

Mr. Raymond P. Oakley.

GPL DIVISION

GENERAL PRECISION, INC.

63 Bedford Road, Pleasantville, N.Y. An equal opportunity employer. tion than of expansion" and "natural choice has been made of those papers prepared by the authors' close associates", rather than by authors working in other countries. This explains why practically all the design descriptions reflect only British and American development. German, Japanese, and other designs are hardly mentioned at all. If I had to express a wish at all I would propose that the authors reissue the book in an enlarged edition where they can take care of the many items that have been barely touched upon in the present little volume.

Atomic Age Physics. By Henry Semat and Harvey E. White. 230 pp. Rinehart & Co., Inc., New York, 1959. Paperbound \$2,00. Reviewed by Norman Feather, University of Edinburgh.

ALTHOUGH we read daily of new peaceful uses for atomic and nuclear energy, scientists themselves admit they are still on the threshold of significant discoveries"—so states the fourth sentence of the Foreword to this book. The sentence is sadly characteristic of the book as a whole: banal and a non sequitur to boot!

From that point, the authors (for they, sober scientists, not their publicity men, are responsible for the Foreword) plunge straight, in equally exaggerated terms, into politics, or, at least, into sociology. After the launching of Sputnik I, they say, "In this country the response was instantaneous. The interest in science . . . became even more intense. . . . The demand for physicists . . . spread as never before through colleges, universities, research organizations, and even industry. . . The National Broadcasting Company . . . announced plans to help meet this need."

The book under review was produced as home reading for those who followed the second half of the course of television lectures which the NBC offered, on a nation-wide basis, in *Continental Classroom* in the winter of 1958, as first fruit of these plans. Its authors make the claim that it is also "an easy guide . . . that should prove useful to any student, irrespective of his level of familiarity with the subject." A reviewer in *Physics Today* will have fulfilled his duty if he examines this claim, ignoring wider issues.

Consider first the student with no previous knowledge of the subject—no more than that of the average television viewer to whom the original lectures were addressed. Such a student, it might be thought, makes the least exacting demands on our authors. But does he? Effective popularization of science is notoriously difficult. It is overwhelmingly important to get the feel of the thing right, from the beginning. Why, then, is the innocent learner told on page 1, "The earliest awareness of a concept of atoms dates from Democritus (b. 460 B.C.) who imagined these particles to be indivisible and to be the constituents of all matter"? Why, rather, is he not told, "Democritus was probably the first person to hold the view that ordinary matter cannot be subdivided without limit; ultimately,

Here's what you can do:

- ... trigger externally, or internally on either A or B trace,
- ... observe equivalent sweep times from 3.3 picoseconds to a millisecond.
- ... display repetitive signals from fractions of millivolts to volts—with wider range possible using external attenuators,
- ... measure risetimes from 350 picoseconds to a millisecond—with uniform, high writing rate at all sweep speeds over the full 8-centimeter by 10-centimeter display area,
- ... expand the signal over 100 times vertically and horizontally,
- calibrate with amplitude and timing signals available from the front panel,
- ... show Lissajous patterns on the 5-inch crt, in addition to single and dual-trace displays and signals added algebraically,
- ... drive X-Y Plotters or similar readout accessories.
- ... change the signal source without affecting the preset response.

Here's how you do it:

- 1 Plug in the power cord and signal source,
- 2 Set the controls on the vertical and timing plug-in units,
- 3 Take the measurements.

In one compact laboratory oscilloscope you have a complete pulse sampling system with risetime of 0.35 nanosecond. Using the 50Ω inputs, or the Tektronix passive probe or cathode-follower probe designed for use with the instrument, you can meet most of the general-purpose-measurement demands in repetitive-signal applications.

Type 661 Oscilloscope (without plug-ins) \$1150
Type 4S1 50Ω Dual-Trace Sampling Unit \$1430
Type 4T1 Timing Unit \$ 750
Probes:
Type P6026 Passive Probe \$ 140

Type P6026 Passive Probe.... \$ 140 Type P6032 Cathode-Follower Probe. \$ 160

U.S. Sales Prices, f.o.b. Beaverton, Oregon

For complete information on the characteristics and capabilities of this new Pulse-Sampling Oscilloscope, please call your Tektronix Field Engineer.

Tektronix, Inc. P. O. BOX 500 · BEAVERTON, OREGON / MItchell 4-0161 · TWX-BEAV 311 · Cable: TEKTRONIX

TEKTRONIX FIELD OFFICES: Albuquerque, N. Mex. • Atlanta, Ga. • Baltimore (Towner) Md. • Boston (Lexington) Mass. • Buffalo, N.Y. • Chicago (Park Ridge) Ill. • Clevetand, Ohio • Dallas, Texas • Daylon, Ohio Denver, Colo. • Deliral (Lattirup Village) Mich. • Endicot (Endwell) N.Y. • Greenstore, N.C. • Houston, Texas • Indianapolis, Ind. • Kansas City (Mission) Kan. • Los Angeles, Calif. Area (East Los Angeles Delira) • West Los Angeles) • Manneapolis, Minn. • Montreal, Quebec, Canada • New York City Area (Albertson, L.I., N.Y. • Stanford, Conn. • Union, N.J.) • Orlando, In. • Philadelphia, Pa. • Pheenix (Scottsdale) Ariz. Perland, Oreg. • Poughkeepsie, N.Y. • Toronto (Willowdale) Onl., Canada • Washington, D.C. (Annandale, Va.).

**RINERING REPBESENTATIVES: Fanton Hawaii Ula Henolulu, Phagoi. Tektronis is represented in Eventy-five overseas countries by qualified engineering organizations.

European and African countries, the countries of Lebanon and Turkov, please conject TEKTRONIX INTERNATIONAL A.G., Terrassenweg 1A, Zug, Switzerland, for the name of your local engineering representative.
Other Overseas areas please write or cable directly to Textronix, (ac., Internation a Marketing Department, P. O. Box 500, Beaverton, Oregon, U.S.A. Cable: TEKTRONIX.

SENIOR-LEVEL PHYSICIST

(OPTICS)

An excellent, challenging position is open for a senior-level physicist to take immediate charge of our laboratory.

Our company's high potential will permit a planned growth of our laboratory under the direction of a capable optical physicist with metrological interests. We offer considerable latitude and freedom of initiative within the broad scope of our fields of interest.

Our small to medium-size company is one of the major contributors to the optical-metrological sciences. Our products include interferometers, specialized optics, monochromators, comparators, ellipsometers, optical benches and a host of sophisticated, custom specialties capable of making measurements, by optical means, to fractions of a micron. Infra-red and automated measuring devices are rapidly becoming a part of our future.

This is a responsible position. The physicist we hire will be directly responsible to top management. His duties will include:

- (a) Research into various phases of optical-metrological phenomena and applications thereof.
- (b) Creation of an advanced R & D program necessitating the application of advanced scientific knowledge.
- (c) Provide evaluation and guidance regarding optical instrumentation.
- (d) Establish standards of functional performance and supervise interpretation and use for our instruments.

The work will be challenging, highly creative and diverse. There will be considerable opportunity for working in close contact with the foremost laboratories of the country in the development of improved research equipment.

If you have a Ph.D. or its equivalent with at least 5–10 years of optical experience, you should write or telephone (collect) to fully explore this position. Salary will be commensurate with experience and background. All applications will be considered without regard to race, color, creed or national origin, and will be kept in strict confidence.

Contact: Mr. R. E. Steinman GAERTNER SCIENTIFIC CORP.

1201 W. Wrightwood Ave., Chicago 14, Illinois.

Phone: Buckingham 1-5335

in thought at least, one comes to the atoms, and further subdivision is impossible"? That is what happens on page 1-and throughout the book a similar perversion of emphasis spoils the story for our innocent learner. No, the book will do him no lasting good. What, for example, if he stops to think philosophically, will he make of the statement (p. 11), "Every study [after 1897] showed that cathode rays and electrons were the same thing"? Or, if he retains his critical awareness as far as p. 179, of the statement "a nucleus may be considered to behave like a drop of liquid which has a surface tension [authors' italics] capable of producing forces that lock the nucleons inside"? And, if he doesn't think critically, is he any the better if he commits this statement to memory, so that he can impress his friends with it?

At the other extreme, there is a graduate student preparing for his written examination. The seventeen chapter headings of this book, from "Atoms and Electrons", through "Fusion and Fission", to "New Adventures in Physics", will certainly pinpoint topics to which he will do well to devote attention. The running text will do something to break down these topics for him, saving him trouble, perhaps, in organizing his thought. Let him hope to find anything more solid in it, however, and he will be disappointed. His supervisor, maybe, might assign him a chapter, now and again, to rewrite as an exercise, correcting the facts of history and of physics (is it incorrect, or only misleading, to state (p. 13) that J. J. Thomson "was the first to separate the isotopes of nonradioactive elements"?), and redressing the emphasis in favor of experiment throughout.

What, then, of the authors' claim? One reader, at least, finds it altogether too optimistic. But, let it be repeated, to make a success of a book of the aims of this one must be an onerous undertaking. Perhaps the most likely person to succeed is someone who has taught atomic and nuclear physics to undergraduates, over many years, as a branch of experimental physics—not as a branch of theory.

Transmission of Information. A Statistical Theory of Communications. By Robert M. Fano. 389 pp. The MIT Press and John Wiley & Sons, Inc., New York, 1961. \$7.50. Reviewed by W. T. Wintringham, Bell Telephone Laboratories.

I T is a pleasure indeed to read a well-written text by an acknowledged authority in his field. As the author states in his preface: "The book is specifically directed to graduate students and engineers interested in electrical communications. It emphasizes the points of view and methods of analysis which are likely to prove most useful to them in their future work." To which this reviewer can add only that Professor Fano has fulfilled this promise in a very able fashion.

Particularly in the fields of communication and of information theory, where these words mean different things to different groups, a reader may find it neces-