NEW BOOKS

Quantum Mechanics

by Albert Messiah, Centre d'Etudes Nucléaires de Saclay; translated from the French by G. M. Temmer

Volume 1 520 pages Approx. \$15.50

Volume 2 In preparation

The Wave Mechanics of Electrons in Metals

by S. Raimes, Imperial College, University of London 382 pages \$12.50

CIRA 1961

Cospar International Reference Atmosphere

Report of the preparatory group for an International Reference Atmosphere, accepted at the GOSPAR meeting, Florence, April 1961
Compiled by H. K. KALLMAN-BIJL, R. L. F. BOYD, H. LAGOW, S. M. POLOSKOW, and W. PRIESTER
71/2 × 10 190 pages \$3.00

Progress in Optics

a new series
edited by EMIL WOLF, Institute of Optics, University of Rochester
Volume 1 336 pages \$12.00

Modern Analysis of Diffraction by Matter

by R. Hosemann, University of Berlin, and S. N. Bagchi, University of Calcutta Approx. 650 pages \$20.75

Progress in Low Temperature Physics Volume 3

edited by C. J. Gorter, University of Leyden 495 pages \$16.00

Nuclear Reactions

edited by P. M. Endt, University of Utrecht, and M. Demeur, Free University, Brussels In press
Published: Vol. 1 1959 514 pages \$12.50

Theory of Elementary Particles Second Revised Edition

by Paul Roman, University of Manchester 580 pages \$14.50

published by

NORTH-HOLLAND Publishing Company

Sole agents U.S.A.

INTERSCIENCE PUBLISHERS

250 Fifth Avenue, New York 1, N. Y.

a division of JOHN WILEY & SONS

unless he has a familiarity with the properties of these functions. The authors would have done better if one or two chapters had been devoted to motion under periodic and nonlinear dynamical systems, where Mathieu and allied functions come to play an important role in the solution of such problems. In addition, a complete discussion of van der Pol's equation as an important example among nonlinear equations might have been helpful. The same objections could be raised in connection with the section on the Navier-Stokes equation. Here, again, examples from magnetohydrodynamics and fluid mechanics would have given a student an idea of the important role this equation plays in modern developments in many fields of physics. As an application of the perturbation method, the authors could have likewise included a short discussion of motion of satellites and rockets. As a new topic, a chapter devoted to stability of dynamical systems would have been valuable, since it is vigorously studied at the present time. Undoubtedly these additions would have increased the size of the book, but they would also have increased its usefulness to a large circle of students and readers. Perhaps one should not expect such great changes in a new edition.

In spite of these shortcomings, the new edition of this important book should be welcomed by students taking a first course in advanced mechanics and by teachers using it as a text.

Electrons and Phonons: The Theory of Transport Phenomena in Solids. By J. M. Ziman. 554 pp. Oxford U. Press, New York, 1960. \$13.45. Reviewed by Paul W. Levy, Brookhaven National Laboratory.

FOR some time there has been an apparent need for a book that would synthesize the numerous recent advances in the field of "collective electron and phonon processes in solids". The need has been competently filled by the present volume. The subject of the book might be more accurately described in the subtitle as "The theory of transport phenomena in solids which involves electrons and phonons".

The organization of the material is straightforward. The first five chapters, entitled: Phonons, Electrons, Phonon-Phonon Interactions, Electron-Electron Interactions, and Electron-Phonon Interactions, form the basis for an understanding of the remainder of the book, which considers the interaction of electrons and phonons with the crystal lattice and lattice imperfections. The author employs a very compact notation which will appeal to individuals who like to see derivations reduced to a minimum of steps. Undoubtedly, some will find the notation excessively abbreviated and even confusing, especially if one attempts to read the later chapters without having read enough of the book to become familiar with the notation, say the first four chapters.

It would appear, both from this book and his other publications, that the author's primary interest is phonon processes, which are here considered first. He

Soon to be available in four separate parts

WRITE FOR APPROVAL COPIES: BOX 903

PRENTICE-HALL, INC.

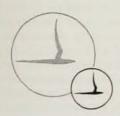
ENGLEWOOD CLIFFS, NEW JERSEY

SHORTLEY and WILLIAMS' popular texts, PRINCIPLES OF COLLEGE PHYSICS and ELEMENTS OF PHYSICS, 3RD, will soon be available in four volumes for even greater flexibility. The content of the split volumes is identical to that of the complete texts, with complete appendices and index included in each of the four parts. The volumes will be available early in 1962 and will be divided as follows:

PRINCIPLES OF COLLEGE PHYSICS (non-calculus)

VOL. I-Mechanics; Heat; Wave Motion & Sound-446 pp.

VOL. II-Light; Electricity and Magnetism-400 pp.


ELEMENTS OF PHYSICS, 3RD (calculus)

VOL. I—Mechanics; Heat and Molecular Physics—432 pp. VOL. II—Wave Motion and Sound; Light; Electricity and Magnetism—469 pp.

George Shortley—Booz, Allen Applied Research, Inc. Dudley Williams—The Ohio State University

F. W. VAN NAME, JR. has completely revised and updated his successful basic text, Modern Physics. The new Second Edition will be available in January. The text presents the fundamental aspects of modern physics for the student with a background in general physics and calculus. Textual material is divided into three parts: the electron, atoms and molecules, and nuclear physics.

January, 1962 320 pp. Text price: \$7.95 F. W. Van Name, Jr.-University of Delaware

INTERESTED IN THE PHYSICS OF IONIZED GASES?

Cornell Aeronautical Laboratory is currently conducting a research problem involving the study of gaseous electronics and the physics of ionized gases. Of particular interest are theoretical and experimental studies of the interactions between ion species, electrons, and neutral molecules in ionized gases, as well as plasma dynamics.

Inquiries are invited from those interested in formulating and conducting research problems in these fields. Graduate degrees in physics are necessary, with related experience preferred. Liberal industrial level salary scales plus cost of living increments and many fringe benefits are provided. The Laboratory's professional prospectus, "A Community of Science," is available upon request. Please address B. T. Rentschler.

CORNELL AERONAUTICAL LABORATORY OF CORNELL UNIVERSITY Buffalo 21, N.Y.

All qualified applicants will receive consideration for employment without regard to race, creed, color or national origin.

DISSERTATIONS IN PHYSICS

AN INDEXED BIBLIOGRAPHY OF ALL DOCTORAL THESES ACCEPTED BY AMERICAN UNIVERSITIES, 1861–1959. Compiled by M. Lois Marckworth. This is the first single source book for all American doctoral dissertations in physics. Part I is an alphabetical listing by author with full bibliographical information. Part II is a permutation subject index produced on the IBM 704 Computer.

\$17.50

Order from your bookstore, please

STANFORD UNIVERSITY PRESS

UNUSUAL RESEARCH OPPORTUNITIES

on the Pacific coast

ELECTRONIC ENGINEERS

... or PHYSICISTS to conduct INDEPEND-ENT RESEARCH in

- electromagnetic radiation and propagation
- · shielding and attenuation
- · electronic circuitry
- · solid state physics

These are excellent positions for experienced people interested in and capable of anticipating, analyzing and solving unusual radiation problems.

HYDRODYNAMICISTS

. . . or HYDRAULIC ENGINEERS or COASTAL ENGINEERS to conduct basic studies of an experimental and theoretical type concerning the reaction to ocean forces of such major constructions as Piers, Moored Platforms, Breakwaters, and Harbors.

Because the solution to such problems is of vital concern to the Navy, these positions carry unusual stature and independence.

Starting salaries for both groups will be \$10,635 with regularly scheduled increases, and Career Civil Service benefits worth \$2557 per year.

Send personal information to the Commanding Officer and Director

U. S. NAVY

Bureau of Yards & Docks

LABORATORY

Department P

PORT HUENEME, CALIFORNIA

(Ideally situated on the Pacific coast between Santa Barbara and Los Angeles)

then takes up electron processes, e.g., band theory, by analogy with the phonon case. Some readers will consider such an approach interesting, particularly the similarity of the mathematical formalism, while others may regard it as merely repetitious. In many instances, a topic is introduced by describing the pertinent theoretical treatment, which is usually begun by stating the assumptions required for each calculation, in most instances quite clearly. However, the author does not. in a strict sense, follow with a derivation of the results. Perhaps it is correct to say that he comments on the derivation, often pointing out the approximations used, mathematical tricks employed, etc. Once a theoretical result is presented, its relation to the whole of solidstate physics is described. It is this description of how each result is related to the rest of the field that makes the book decidedly useful; but again, since so much of it involves interpretation, it is bound to be controversial. While much of the contents may be regarded as theoretical solid-state physics, experimental results are not slighted, particularly when experimental results are available which can be compared directly with the theoretical treatments. It is not a book to be read casually. A thorough knowledge of solid-state physics and of quantum mechanics is required of the reader. Thus, it will be useful mainly to graduate students and experienced researchers.

Boundary and Eigenvalue Problems in Mathematical Physics. By Hans Sagan, 381 pp. John Wiley and Sons, Inc., New York, 1961. \$9.50. Reviewed by T. Teichmann, General Atomic Division of General Dynamics Corporation.

BOUNDARY and eigenvalue problems play such an important role in physics and engineering that almost every general book in these fields contains some discussion of them, quite apart from the number of definitive volumes devoted exclusively to these topics. In discussing a new book of this kind, one must therefore ask what special features, if any, distinguish the content and make it particularly useful or interesting.

The aim of Sagan's book is to provide a self-contained and relatively homogeneous introductory graduate course. The opening chapters deal with variational problems and with the partial differential equations connected with them, particular attention being paid to boundary conditions. Problems of existence and uniqueness are also discussed quite extensively, as is the superposition principle, and to some extent, separability. The next group of chapters treat trigonometric and more general Fourier series, and the boundary value problems out of which they arise. The general theorems about second order differential equations are proved by a method (due to Pruefer) utilizing polar coordinates in the phase plane. A conventional discussion of Legendre and Bessel functions is then followed by a careful description of the external properties of eigenvalues, including numerical procedures due to Rayleigh, Ritz, and Weinstein. The book concludes with