PHYSICS IN PAPERBACK

Four great works of physics at a fraction of their original prices

STATISTICAL THERMODYNAMICS by Erwin Schrödinger

Develops one simple unified method, capable of dealing, without changing the fundamental attitude, with all cases (classical, quantum, Bose-Einstein, Fermi-Dirac, etc.) and with new problems that may arise. "This little book is so clear, and contains so much information and so many ideas, that I strongly recommend it to students."

—George Gamow \$1.65

A TREATISE ON THE ANALYTICAL DYNAMICS OF PARTICLES AND RIGID BODIES

by E. T. Whittaker

"The classical treatise on the subject of analytical dynamics—a work at once eminently readable, rigorously exact, and almost encyclopaedically comprehensive."—Science Progress. "The best in the English language."—Bulletin of the American Mathematical Society \$4.95

MODERN MAGNETISM (4th Edition) by L. F. Bates

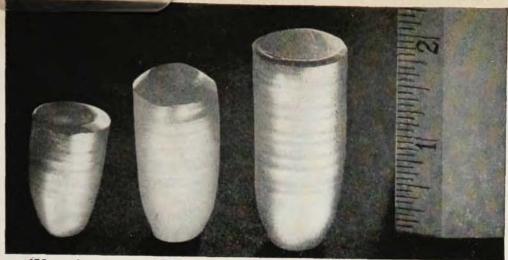
Experimental approach to the physics of magnetic phenomena, their theoretical interpretation and industrial applications. This new edition treats recent work on ferromagnetic domains and magneto-thermal phenomena and includes many alterations. "An excellent book for students and a valuable aid for those doing research work in the field of magnetism."—American Journal of Physics \$2.95

THE THEORY OF HOMOGENEOUS TURBULENCE

by G. K. Batchelor

The first systematic and complete account of the established knowledge of turbulence. Includes such topics as mathematical representation of the field of turbulence, kinematics of homogeneous turbulence, general dynamics of decay, and decay of energy-containing eddies. Equally suitable for students and advanced theoretical physicists. \$3.75

CAMBRIDGE UNIVERSITY PRESS 32 East 57th Street, New York 22, N.Y.


he has succeeded in producing a work which, although presumably addressed to the intelligent layman, can be read with profit by the physicist as well. As one might expect, he does not restrict himself to a description of past achievements but makes some sound predictions too. Progress in some areas is so rapid that since the writing of these predictions some already have come true.

It is a pity that the beauty of this volume is marred by many inaccuracies and typographical errors. For instance, our colleague Hudson becomes "Henderson" in the text and in the index. Lenard becomes "Lennard", Müller becomes "Möller", and so on. In Chapter 12, the orbiting velocity is given in the text as v. The caption of Figure 12.1 employs the Greek letter v to denote the same velocity. The figure itself is halfway between; it could be read as either v or as v. Also, since Sir Harrie has carefully defined his terms throughout the book, it may be hoped that in the next edition of this very interesting work he will include a definition of angular momentum.

Classical Mechanics (2nd ed.). By H. C. Corben and Philip Stehle. 389 pp. John Wiley & Sons, Inc., New York, 1960. \$12.00. College ed. \$10.00. Reviewed by Nicholas Chako, Queens College.

CLASSICAL mechanics has been one of the most important disciplines in the university science curricula. However, since the advent of quantum mechanics many important parts included in the traditional courses have been relegated to secondary place or altogether neglected, and the emphasis has been put more on the Hamiltonian formalism. On the other hand, the recent interest in space satellites, rocket development, and space technology in general, has brought a revival in teaching mechanics in a broader sense, not only to physics and mathematics students, but to engineering students as well.

In this new edition, the authors have improved the presentation of the subject matter and have added a substantial number of new topics. Among the most important of these is a section on rigid-body rotation about a fixed point, time-dependent forces, a considerable improvement in Poisson brackets, perturbation theory (especially for time-dependent dynamical systems), motion of a particle with spin, a brief discussion of rocket motion and the Navier-Stokes equation, application of the strong focusing principle in high-energy accelerations, and a new chapter on classical field theory based on variational principles. The inclusion of such a wide variety of new topics makes the new edition superior to the old, even though a number of these are treated so briefly as to shed some doubt on their usefulness to the student in understanding the subject matter as presented in the text. For instance, in the chapter dealing with "time-dependent forces and nonconservative motion", where Mathieu functions are introduced in connection with the problem of invertedpendulum motion, the student will be at a total loss,

150 carats

284 carats

438 carats

STRONTIUM TITANATE

...an interesting single crystal for specialized applications

Strontium titanate (SrTiO₃) of exceptionally high purity is now being produced in monocrystalline form. Among the outstanding properties of this crystal are high refractive index throughout the visible spectrum as well as the infrared, and resistance to high temperature (melting point about 2080 C.) and to chemical attack. The crystal is cubic, thus isotropic, and singly refracting. It transmits over the range from 395 millimicrons to about 5.5 microns, and has a high dielectric constant and high resistivity.

Single-crystal strontium titanate is already well established in the optics of infrared detectors. Its high refractive index, suitable transmissivity, lack of birefringence, and physical and chemical stability make it a valuable material for lenses, prisms and windows of infrared optics. Strontium titanate is offered only in the form of whole boules, which range in size from 100 to 500 carats. Those illustrated above are typical.

Strontium titanate also suggests interesting applications in the following areas:

- Masers and wave guides in the micro-wave field... where strontium titanate "doped" with specific impurities is of great interest because of its response to applied electric or magnetic fields.
- Dielectrics . . . where strontium titanate as a monocrystalline dielectric

should be of interest in comparison to polycrystalline ceramic types.

For these fields of investigation, we have already supplied, as special products, single crystal strontium titanate doped with various impurities of interest. In addition, we also offer for similar applications single crystal rutile (TiO₂), which however is tetragonal and exhibits birefringence. Doped rutile as a special product for micro-wave experimental programs can be made available.

Whatever your requirements, we invite you to consult us for prices and technical information on projects for which our know-how in the field of single crystals may be helpful.

NATIONAL LEAD COMPANY TITANIUM DIVISION

NEW BOOKS

Quantum Mechanics

by Albert Messiah, Centre d'Etudes Nucléaires de Saclay; translated from the French by G. M. Temmer

Volume 1 520 pages Approx. \$15.50

Volume 2 In preparation

The Wave Mechanics of Electrons in Metals

by S. Raimes, Imperial College, University of London 382 pages \$12.50

CIRA 1961

Cospar International Reference Atmosphere

Report of the preparatory group for an International Reference Atmosphere, accepted at the GOSPAR meeting, Florence, April 1961
Compiled by H. K. KALLMAN-BIJL, R. L. F. BOYD, H. LAGOW, S. M. POLOSKOW, and W. PRIESTER
71/2 × 10 190 pages \$3.00

Progress in Optics

a new series
edited by EMIL WOLF, Institute of Optics, University of Rochester
Volume 1 336 pages \$12.00

Modern Analysis of Diffraction by Matter

by R. Hosemann, University of Berlin, and S. N. Bagchi, University of Calcutta Approx. 650 pages \$20.75

Progress in Low Temperature Physics Volume 3

edited by C. J. Gorter, University of Leyden 495 pages \$16.00

Nuclear Reactions

edited by P. M. Endt, University of Utrecht, and M. Demeur, Free University, Brussels In press
Published: Vol. 1 1959 514 pages \$12.50

Theory of Elementary Particles Second Revised Edition

by Paul Roman, University of Manchester 580 pages \$14.50

published by

NORTH-HOLLAND Publishing Company

Sole agents U.S.A.

INTERSCIENCE PUBLISHERS

250 Fifth Avenue, New York 1, N. Y.

a division of JOHN WILEY & SONS

unless he has a familiarity with the properties of these functions. The authors would have done better if one or two chapters had been devoted to motion under periodic and nonlinear dynamical systems, where Mathieu and allied functions come to play an important role in the solution of such problems. In addition, a complete discussion of van der Pol's equation as an important example among nonlinear equations might have been helpful. The same objections could be raised in connection with the section on the Navier-Stokes equation. Here, again, examples from magnetohydrodynamics and fluid mechanics would have given a student an idea of the important role this equation plays in modern developments in many fields of physics. As an application of the perturbation method, the authors could have likewise included a short discussion of motion of satellites and rockets. As a new topic, a chapter devoted to stability of dynamical systems would have been valuable, since it is vigorously studied at the present time. Undoubtedly these additions would have increased the size of the book, but they would also have increased its usefulness to a large circle of students and readers. Perhaps one should not expect such great changes in a new edition.

In spite of these shortcomings, the new edition of this important book should be welcomed by students taking a first course in advanced mechanics and by teachers using it as a text.

Electrons and Phonons: The Theory of Transport Phenomena in Solids. By J. M. Ziman. 554 pp. Oxford U. Press, New York, 1960. \$13.45. Reviewed by Paul W. Levy, Brookhaven National Laboratory.

FOR some time there has been an apparent need for a book that would synthesize the numerous recent advances in the field of "collective electron and phonon processes in solids". The need has been competently filled by the present volume. The subject of the book might be more accurately described in the subtitle as "The theory of transport phenomena in solids which involves electrons and phonons".

The organization of the material is straightforward. The first five chapters, entitled: Phonons, Electrons, Phonon-Phonon Interactions, Electron-Electron Interactions, and Electron-Phonon Interactions, form the basis for an understanding of the remainder of the book, which considers the interaction of electrons and phonons with the crystal lattice and lattice imperfections. The author employs a very compact notation which will appeal to individuals who like to see derivations reduced to a minimum of steps. Undoubtedly, some will find the notation excessively abbreviated and even confusing, especially if one attempts to read the later chapters without having read enough of the book to become familiar with the notation, say the first four chapters.

It would appear, both from this book and his other publications, that the author's primary interest is phonon processes, which are here considered first. He