

SENIOR RESEARCH SCIENTIST

Salary \$15,000

This position in our new Research Laboratory in a desirable New England location reports to the Associate Director of Research and is responsible for conducting companysponsored basic and applied research on

STRENGTH AND STRUCTURE OF SOLIDS

The position entails responsibility for longrange, individual science efforts in conducting basic research and direction of support staff in laboratory set-up. Experimental studies on effects caused by structure changes in solids aim to contribute to the Company's basic technology in metal fatigue problems. Fabrication of new devices by application of knowledge of solid state.

Requires a Ph.D. in Physics, Metallurgy, Engineering Sciences, etc., and up to 5 years of related industrial experience, or teaching experience in related fields.

An Equal-Opportunity Employer

Submit resume in complete confidence to:

Box 1061 Physics Today 335 East 45 Street New York 17, N.Y.

Almost all scientific information about atoms has been accumulated during the past two centuries, and knowledge of the divisibility of atoms into elementary particles belongs almost entirely to this 20th century. Many educated people probably know that nature has provided some 90 species of chemical atoms, but how many know what these atoms are made of? Besides electrons, protons, and neutrons, the first elementary particles to be discovered in atoms, evidence has been found for mesons, muons, pions, several kinds of hyperons, neutrinos, and anti-particles of nearly all kinds, so that instead of three elementary particles there are now nearly thirty! Is this all there is to learn about atoms and particles?

"One may say that the present opinion that elementary particles will really bear out their name (as the atoms did not) is due to our comparatively slight familiarity with their properties, and that all of them will be found in future to be as complex as grand pianos. It may also be that this will not be the end of the road and that years later much smaller subelementary particles will be discovered. There is no way to predict the future, and the question whether Democritus' original philosophical concept of indivisibility was right or wrong will never be answered by empirical means. But, somehow, many scientists, including the author, feel happier with the thought that, in the study of matter, things will come to an end and that the physicists of the future will know all there is to know about the inner structure of matter. And it also seems quite plausible that the elementary particles of modern physics really deserve their name, because their properties and behavior appear to be much simpler than could ever be said about the atom," (P. 147.)

Biographical Memoirs of Fellows of the Royal Society, Vol. 6 (1960). 295 pp. The Royal Society, London, 1960. 30s. Reviewed by R. Bruce Lindsay, Brown University.

THE labors of the science historian are being materially lightened by the appearance of these annual volumes of biographical memoirs of fellows of the Royal Society of London, of which this is Volume 6 of a new series started in 1955. It contains brief sketches of the lives and scientific achievements of seventeen Fellows and Foreign Members who died between 1958 and 1960. Each is accompanied by a photograph and a chronological bibliography. Of the individuals described, six were biological scientists and ten physical scientists. The one remaining describes the American philanthropist John Davison Rockefeller, Jr., who was elected as a Fellow (not as a Foreign Member, as is usual in such cases) in 1939 because, in the words of Statute 12 of the Society, he "had rendered exceptional service to the cause of science".

Of the five physicists memorialized in this volume, the most celebrated were Jean Frederic Joliot, Max von Laue, and C. T. R. Wilson. In 1933 Joliot received jointly with his wife, Irene Joliot-Curie, the Nobel

Two important NEW scientific research journals from PERGAMON...

Quantitative Spectroscopy and Radiative Transfer

This new International Scientific Research Journal will publish papers dealing with: theoretical and experimental determinations of f-numbers or absolute intensities for atomic and/or molecular systems; theoretical and experimental studies on spectral line shapes and widths; emissivities of heated gases, liquids, and solids; flame temperatures and flame emissivities; emission of radiation from heated gases, liquids and solids; long-range detection of radiating sources; quantitative spectroscopic techniques for environmental studies, such as those related to rocket flights and satellite exploration; shock tube studies in which the emphasis is on quantitative spectroscopy; and radiant energy emission from plasmas.

contents, Volume I, No. I

Hermann K. Wimmel: Statistical line broadening in plasmas;
M. Lapp: Shock-tube measurements of the f-number for the (0,0)-band of the OH²Σ—2²II transitions; H. Sadjian, N. K. Wimmel and H. Margenau: Forbidden helium line in a plasma spectrum; J. C. Camm, B. Kivel, R. L. Taylor and J. D. Tears: Absolute intensity of non-equilibrium radiation in air and stagnation heating at high altitudes; D. Robinson and R. W. Nicholls: Intensity measurements on overlapped molecular bands.

published quarterly

Editor-in-chief: S. S. Penner, Division of Engineering, California Institute of Technology

Honorary Editorial Advisory Board

W. S. Benedict, U.S.A.
Lewis M. Branscomb, U.S.A.
A. G. Gaydon, England
L. Goldberg, U.S.A.
J. C. Mottel, U.S.A.
J. H. Jaffe, Israel
A. Kantrowitz, U.S.A.
P. Swings, Belgium

J. Lecomte, France H. Margenau, U.S.A.

R. Meoke, West Germany R. Meyerott, U.S.A. R. W. Nicholls, Canada

H. Takeyama, Japan W. M. Vaidya, India **Infrared Physics**

This journal is an international research journal for the publication This journal is an international research journal for the publication of scientific papers concerning infrared physics and its applications. It covers infrared theory, experiment and instrumentation as applied to infrared detection and transmission and to problems of atmospheric, meteorological, geophysical, astrophysical and space research. Except as they pertain directly to infrared studies of planetary and stellar atmospheres, papers on molecular spectroscopy or spectrochemical analysis are considered outside the scope of Infrared Physics. The journal will contain Research Papers, specially invited Critical Surveys, quickly published Research Notes, and Book Reviews. The language preferred is English, but papers will be published occasionally in French and German. Manuscripts for editorial consideration should be sent to the Member of the Board of Editors most conveniently located.

forthcoming papers

A. F. FRAY and S. NIELSEN: Germanate glasses: removal of OH absorption bands; E. R. STEPHENS: Long path infrared spectroscopy for air pollution research; R. S. McDERMOTT, R. L. POWELL and E. R. STACH: Infrared measurements of the optical constants of the low-melting temperature glass system of 30% Arsenic—34% Sulfur—36% Thallium.

some papers published previously
S. NEILSEN, W. D. LAWSON and A. F. FRAY: Some infrared transmitting glasses containing germanium dioxide; P. BRATT, W. ENGELER, H. LEVINSTEIN, A. MACRAE and J. PEHEK: A status report on infrared detectors; P. A. LAPP and H. S. KERR: Sunseeker for high-altitude infrared solar spectra; C. HILSUM and G. R. HARDING: The theory of thermal imaging, and its application to the absorption-edge image-tube.

board of Editors

N. MIGEOTTE, Belgium; T. S. MOSS, England; S. PASSMAN, U.S.A.; W K. WEIHE, U.S.A., Assisted by an International Honorary Editorial Advisory Board. Published Quarterly

Free Specimen Copies and Details of Subscription Rates Gladly Sent On Request

PERGAMON PRESS INC., 122 East 55th Street, New York 22, N. Y.

PHYSICISTS AND RESEARCH **ENGINEERS**

UNUSUAL OPPORTUNITIES FOR PROFESSIONAL CAREERS. CHALLENGING PROBLEMS IN THE THEORETICAL ASPECTS OF:

- · Space Physics
- Nuclear Weapons Effects
- Satellite Systems Studies
- · Theory of Communications
- · Self-Adaptive Systems
- · Operations Research
- · Owned and Managed by Employee-Scientists
- · Southwest Climate · Low Population Density
- Wide Range of Benefits Including Profit Sharing
- No Hardware Development or Production
- · Emphasis Placed on Theoretical Concepts
- Advanced Degree Desirable

ADDRESS INQUIRIES TO:

4805 Menaul Blvd. N.E.

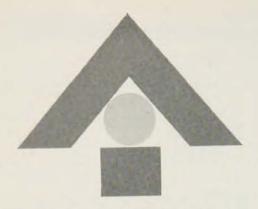
Albuquerque, N. M.

PHYSICISTS ENGINEERS MATHEMATICIANS

Engineering-Physics Company has recently opened up new fields of research and development. Singular opportunities exist for scientists and engineers who have the resourcefulness, imagination and technical background to assume a responsible role.

> Projects include studies and developmental work on:

FLUID DYNAMICS MAGNETOHYDRODYNAMICS PHYSICAL INSTRUMENTS BALLISTICS


HYPERVELOCITY ACCELERATORS UNDERWATER PHYSICS

Address inquiries to Dr. Vincent Cushing

ENGINEERING-PHYSICS COMPANY

5515 Randolph Road Rockville, Maryland

ASTROPOWER

offers responsible research positions to

SOLID STATE PHYSICISTS

Ph.D. or equivalent, with experience in; preparative techniques and measurements of physical properties and a working knowledge of band theory and its application to solid state devices; or in design of solid state devices.

Astropower is an expanding propulsion R & D firm located in the ideally situated research center at Newport Beach, California, one of the finest recreation areas in the world. Superior employee benefits. Submit resumes to Dr. George Moe, Vice President, Research. Qualified applicants will receive consideration without regard to race, creed or national origin.

ASTROPOWER, INC.

A subsidiary of Douglas Aircraft Co. 2968 Randolph Avenue Costa Mesa, California

Prize for Chemistry for their discovery of artificial radioactivity. Von Laue received the Nobel Prize for Physics in 1914 for his discovery of the diffraction of x rays by crystals, and C. T. R. Wilson in 1927 shared a similar prize with A. H. Compton for their contribution to the understanding of the scattering of high-energy photons. All three were among the outstanding physicists of the twentieth century, though it is of interest to note that Wilson, who was born in 1869, did some of his most notable work before 1900.

Vital statistics about celebrated intellectuals are always of interest. The average longevity of those whose biographies appear in this volume was 77. The youngest at death was 58 and the oldest 98. Eight lived to be over 80.

The biographies are of uneven length and quality. Some are extremely brief, while others, such as that of von Laue by P. P. Ewald, are extensive enough to give a vivid picture of the man's personality as well as a detailed review of the significance of his scientific work. All students of physics and science in general will find it worthwhile to dip into this collection.

Turbulence. Classic Papers on Statistical Theory. S. K. Friedlander and Leonard Topper, eds. 187 pp. Interscience Publishers, Inc., New York, 1961. \$6.00. Reviewed by R. E. Street, University of Washington.

AS the editors point out in their preface to this collection of reprints of twelve famous papers on the theory of turbulence, their intent was to present only those papers on isotropic turbulence which had their origins in the statistical theory of G. I. Taylor and had been published prior to 1950 by which time "our physical understanding of turbulence was already adequate for the study of many related scientific questions." In this way the size of the volume has been kept small enough so the price is reasonable and yet it seems that all of the best-known papers have been included. The number of authors is few, but include the pioneers in the field; thus, we have the first four parts of Taylor's papers on "Statistical Theory of Turbulence" as well as his 1921 paper on "Diffusion by Continuous Movements", with which his ideas started, and his 1938 paper on the spectrum. Three papers are by von Kármán and his co-workers, including the famous 1938 paper with Howarth and the 1949 paper with C. C. Lin which concludes the book. Also included is a paper by C. C. Lin on the law of decay, the excellent review article by H. L. Dryden of 1943 and Kolmogoroff's three 1941 papers.

Two of the papers are in the nature of review and this, together with Taylor's inimitable style, make most of them excellent reading. Only the three Kolmogoroff papers, although translated, can be said to lack expository style. Thus, the book can be recommended to anyone desirous of becoming acquainted with the classical statistical theory of isotropic turbulence through a study of some of the original papers. By not including papers since 1950 there are certainly gaps in the prog-