PHYSICISTS

A modern \$4 million research laboratory, in a landscaped setting on a 400-acre site, lends an atmosphere conducive to creative work. Here a dynamic, rapidly expanding manufacturer in the field of xerography (physical photography based on solidstate and electrostatic phenomena) has outstanding growth opportunities for:

Theoretical Physicist

For materials and devices lab, with 2-3 years' experience in analysis of semi-conductor devices-especially single-crystal diodes and transistor devices. Openings in fields of photoconductivity and semi-conductivity as applied to electro-optical devices. Emphasis will be on study of properties of photo-conductive materials and relationship of transport mechanisms to device behavior. Individual will have major responsibility for planning, supervising, and carrying out experimental programs.

Senior Project Physicist

Ph.D. with experience in single-crystal device field. Background should include actual experience in device design and development. Experience in field of photo-conductivity, with general knowledge and understanding of electro-optical devices desirable.

Senior Physicist

Ph.D in optics or atomic physics for challenging exploratory work in photo-conductors and electrostatic imaging processes. Wide ranging research in photographic-imageforming systems, gaseous discharge, and properties of photo-conductors. Ideal for original, creative man.

Kindly send resume and salary requirements to:

Fred A. Weterrings Industrial Relations Division

P. O. Box 1540 Rochester 3, New York

HALOID HALOID XEROX INC. XEROX®

is valuable, but there is too little of it for a serious student to compare, for example, properties in different numbers of dimensions. Certainly these differences are not discussed in any detail by the authors. The chapters on Green's functions deal only with scattering problems and give no clue of the role of these ideas in quantum electrodynamics or statistical mechanics. Finally, there seems no noticeable omission in the chapter on variational methods, except that only the bare outlines are presented with few really illuminating examples. There is a chapter on numerical methods but this is so sketchy as to be nearly meaningless.

The problems are not too advanced and the references are mainly to other texts. In summary, it is difficult to recommend this book as a text although it might have some slight value as a reference work.

Rheology. Theory and Applications, Vol. 3. Edited by Frederick R. Eirich, 680 pp. Academic Press Inc., New York, 1960. \$21.00. Reviewed by Robert S. Marvin, National Bureau of Standards.

HIS is the third and final volume of a series THIS is the third and many designed as "a condensed report on present-day rheology" knowledge of theoretical and experimental rheology". The first two were reviewed in Physics Today, Vol. 11, No. 10, p. 30 (October, 1958).

This volume starts with a summary, by B. H. Zimm, of his version of the molecular theory of the viscoelastic behavior of polymer chains in dilute solution. It covers the concepts involved very clearly and summarizes the results, but since it is a reproduction of a general lecture given in 1956 it does not give the detail one would normally expect in a chapter of this type. The second chapter gives solutions to the flow equations applicable to all the commonly used viscometers, including treatments appropriate for Newtonian, viscoelastic, and non-Newtonian fluids. This is a valuable collection of results from widely diverse sources, including some not readily available elsewhere. It suffers to some extent by the inclusion of certain "solutions" which do not appear particularly useful from a practical point of view, but on the whole this chapter is a useful reference.

The balance of the volume covers the rheology of particular types of materials: crystalline polymers, electrically charged particles, concrete, latex, printing inks, pastes and paints, sand-water and clay-water mixtures, and inorganic glasses, plus chapters on lubrication, adhesion, molding, spinning, and extrusion.

As in the previous volumes, each chapter is written by a specialist in a particular field, and the volume as a whole shows a considerable diversity not only in the subjects covered but in the type of presentation. Some of the more specific chapters seem to recount observations without relating them particularly well to any general or basic concepts. In part this is due to the complexities of the phenomena treated and is a reflection of the true state of our understanding, but

The University Physics Series

under the general editorship of WALTER C. MICHELS, Marion Reilley Professor of Physics, Bryn Mawr College

AN INTRODUCTION TO MATHEMATICAL PHYSICS

by WILLIAM BAND, Professor of Physics, Washington State College

"This stimulating work is a well-organized collection of brief surveys of topics in mathematical physics, all of which are currently of cardinal interest and importance . . . The style is relaxed and easy-going, and relief from the technical details is provided occasionally by historical and philosophical material." Homer V. Craig in American Mathematical Monthly. 1959, 326 pp., \$7.25

MODERN ATOMIC AND NUCLEAR PHYSICS

by C. SHARP COOK, Head of Nucleonics Division, U.S. Naval Radiological Defense Laboratory, San Francisco

Developed and tested in the author's courses for over a decade, this new elementary text covers atomic and nuclear structure, atomic interactions with other atoms, and atomic particles and radiations. It is suitable for semester courses in atomic physics, atomic and nuclear physics, and modern physics. March, 375 pp., about \$7.75

PHYSICAL MECHANICS, 3rd edition

by ROBERT BRUCE LINDSAY, Hazard Professor of Physics and Dean of the Graduate School, Brown University

The third edition of this intermediate text includes three new chapters—"Kinetic Theory of Gases and Statistical Mechanics," "Relativistic Mechanics," and "Wave and Quantum Mechanics." In the realm of applications, sections are devoted to ballistic missiles and artificial satellites, as well as rheology, the collisions of nuclear particles and wave dispersions. April, 480 pp., about \$8.50

AN INTRODUCTION TO ASTRONOMY, 6th ed.

by ROBERT H. BAKER

This leading text for a quarter century is once again brought up to date. Dr. Baker conveys the latest information simply and powerfully, carefully distinguishing theory from established fact. New material includes the discovery of the Van Allen radiation belt around the earth, the first recording of features of the far side of the moon, and the effective photography of the extreme ultraviolet solar spectrum. December 1960, 355 pp., about \$5.95

PHILOSOPHICAL IMPACT OF CONTEMPORARY PHYSICS

by MILIČ ČAPEK, Professor of Philosophy, Carleton College

This incisive study closely and systematically discusses each main physical concept twice—first in its historical setting, then in its changing or changed meaning in contemporary physics. The author emphasizes the close connection between physics and philosophy in both the classical and modern period. March, 250 pp., about \$4.95

MODERN COLLEGE PHYSICS, 3rd ed.

by HARVEY E. WHITE, Professor of Physics, University of California (Berkeley)

Widely adopted because of its readability and balanced coverage, the third edition of this basic text includes more than one thousand problems, with answers given for all even-numbered problems. A two-volume laboratory manual is now available from the Wm. C. Brown Company, Dubuque, Iowa. 1956, 840 pp., \$7.50

DESCRIPTIVE COLLEGE PHYSICS

by HARVEY E. WHITE

"Dr. White's ability, as evidenced throughout this book, to create in the reader's mind the urge to further explore the matter is one which will surely make the text appreciated by non-science majors." Earle H. Warner in American Journal of Physicis. 1955, 485 pp., \$6.25

D. VAN NOSTRAND COMPANY, INC.—120 Alexander Street Princeton, New Jersey

one cannot help but feel that a more fundamental viewpoint could have been adopted in some cases.

Any such criticism should however be accompained by the statement that there does not exist any other recent work on rheology which even attempts to cover as wide a field as does Eirich's. Many of the phenomena discussed are outside the linear range of behavior, and the proper mathematical formulation of such phenomena has been attacked vigorously only in recent years and is far from developed to the point where it can be generally applied. It will no doubt be many years before these general mathematical formulations will be applied widely by those who must test and compare materials showing complicated rheological properties. This volume does give the reader at least some hint of the wide variety of phenomena which must be accommodated in a fully general mathematical formulation. The three volumes as a whole achieve to a remarkable degree the objective of bringing together a widely diversified field encompassing the range from pure mathematics to empirical testing.

Properties and Structure of Polymers. By Arthur V. Tobolsky. 331 pp. John Wiley & Sons, Inc., New York, 1960, \$14.50. Reviewed by Stuart A. Rice, Institute for the Study of Metals, The University of Chicago.

THIS book deals with material largely omitted from courses dealing with the physical chemistry of polymers. As the subject matter is of considerable interest it is pertinent to examine the suitability of the book as a text and reference.

The six chapters deal respectively with: (1) a simple discussion of the equation of state, viscosity, and viscoelasticity for systems of small molecules; (2) chain conformation, crystallization, the glass temperature, viscosity, and elasticity of linear polymers; (3) mathematical treatment of linear viscoelasticity; (4) viscoelastic behavior of polymers; (5) chemical stress relaxation; and (6) polymerization equilibria. In addition, ten appendixes deal with details omitted in the body of the text.

In general I find the level of the text suitable for seniors or first-year graduate students. Despite the title there is very little material dealing with the structure of polymers. The work of Keller is mentioned only briefly, the nuclear resonance investigations of Slichter and Powles are given less than one page, the word polypeptide does not even appear in the index, etc. Moreover, there is insufficient detail with respect to the various molecular theories proposed. For instance, the theory of rubber elasticity as developed by James and Guth and Flory is sketchily treated; the very important theory developed by Zimm is mentioned only in name; Pao rates only one reference in the entire book; the treatment of the properties of small molecules is superficial, etc. On the positive side, the book contains a wealth of data along with extensive interpretation in terms of dashpots and springs.

With the understanding that the text must be supplemented by outside reading, it can be used as a supplement to Flory's *Principles of Polymer Chemistry* in the usual polymer physics curriculum. As such, it is a useful addition to the literature. However, the lack of theoretical detail mentioned above places severe limitations on the utility of the text as a general reference work.

The Nature of Science. By David Greenwood. 95 pp. Philosophical Library, Inc., New York, 1959. \$3.75. Reviewed by R. Bruce Lindsay, Brown University.

I T is fair to say that professional philosophers are taking an increasing interest in the logical foundations of science, and the amount of material now available in this field is not only very large but is steadily growing. This is illustrated by the volume under review which is a collection of five essays by a well-known philosopher on various aspects of the philosophy of science. Since the essays were written at various times during the past ten years, the book is not a well organized treatise. It takes its title from the first chapter, which presents the author's version of the nature of a scientific theory and the relation between induction and deduction in science. This appears to contain little that is essentially novel. Somewhat more meaty are the remaining four chapters with the following titles: Concept Formation and Operational Definition, Quantitative Inductive Procedures, Causality and the Counterfactual Conditional, and The Problem of Real Numbers. There is a valuable critique of Bridgman's operational idea in the second chapter, though it is by no means exhaustive and scarcely does justice to the problem of the constitutive character of definitions in physical theory.

The physicist will find in Chapter 4 a good discussion of the difference between causality and determinism, a matter of some current confusion in accounts of the philosophy of modern physics. To read the book with thorough understanding the reader must be familiar with the terminology of symbolic logic, which the author uses freely. The final chapter is of purely mathematical interest. A short bibliography is appended. The type is small and unfortunately does not lend itself to easy reading.

Applications of Thermoelectricity. By H. J. Goldsmid. 118 pp. (Methuen, London) John Wiley & Sons, Inc., New York, 1960. \$2.25. Reviewed by Peter L. Balise, University of Washington.

FROM the title of this little book, one might expect a description of the practical applications that have been made of thermoelectricity, but less than one fifth of its pages are devoted to this. Rather it is primarily a good introduction to thermoelectric behavior, its writing prompted by the recent research in thermoelectric applications. Both refrigeration and power