progeny elongate to form the sections of the cylinder, their long axis parallel to the axis of the cylinder. If the root has to pierce sand the formation of the root causes a mechanical force to lift the bean up off the sand surface. If a hole is prepared the root merely grows down into it and the bean is not lifted. The sequence of changes in the cells after they are formed in the tip and shaped as part of the root cylinder is detailed in the first two chapters as a basis for describing the effects of radiation.

One of the gross effects of x-ray dosage is to reduce the rate of linear increase of root length. Extensive studies are summarized; for example, the low dose of 20 roentgens produces a measurable reduction in growth rate. At 150 roentgens the total growth is about half of normal. Examination of the root tip cells shows an inhibition of mitosis and production of chromosome anomalies by the radiation. Each of these effects is treated in separate chapters. An examination of the effect of oxygen enhancement of chromosomal derangement is examined in three chapters which also describe the influence of cyanide and increased gas pressures.

Chromosome damage arises to a large extent in cells which are dividing during the radiation dosage: they become sticky and clump together. This effect is also produced by drugs which are discussed along with the enhancement of stickiness brought about by increased oxygen. This leads to a description of work aimed at measuring the variation of chromosomal sensitivity to damage in different phases of the life cycle of the cell.

In a general sense, the first 17 chapters provide a remarkable picture of how living matter is modified by and how it reacts to various agents. In a more practical sense this clearly elucidated picture permits the author to compare in the last and 18th chapter findings on the bean cell with cells of mammalian origin. The result is most instructive and encouraging particularly with respect to radiation therapy of malignancy; one wishes it had been extended to several chapters.

I noted that several graphs lacked description of the ordinate axis and I found it necessary to look up the original papers to find out exactly what the graphs meant. Aside from this, the book has a good format. An author and a subject index and a detailed table of contents enable one to find subjects easily. Nineteen photographs, 74 graphs, and 41 tables supplement the text. This is a highly commendable book on a fascinating aspect of life and atomic radiations.

The Scattering and Diffraction of Waves. By Ronold W. P. King and Tai Tsun Wu. 218 pp. Harvard U. Press, Cambridge, Mass., 1959. \$6.00. Reviewed by T. Teichmann, Lockheed Missiles and Space Division.

PROBLEMS of the scattering and diffraction of waves have been central to the classical field theories of electromagnetism and acoustics for well nigh 100 years. Interest in them has remained strong even though the underlying mathematical foundations were soundly established almost since their inception. Un-

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physical Scientists

THE M.I.T. OPERATIONS EVALUATION GROUP grew from an operations research effort begun by the Navy in 1942 and continued (and expanded) since the close of World War II under the aegis of the Massachusetts Institute of Technology. This civilian nongovernment group advises the Chief of Naval Operations on operational problems susceptible to quantitative analysis.

A continuing need exists for able mathematicians and physical scientists who possess the unusual combination of outstanding technical competence, personal integrity, originality, boldness and drive and who seek new challenges to their imagination and problem-solving ability.

Most of our 65 scientific staff members hold a PhD in mathematics or one of the physical sciences. Their task is to apply the basic analytical techniques of scientific research to the study of Naval operations with the object of shedding some light upon the complex decisions which must be made in order to assure the continued effectiveness of the Navy in present tasks, as well as any future ones they may be called upon to undertake.

In addition to the traditional activities in the field of operations research, we are now forming an applied science division whose task will be the exploration of the technological areas which lie midway between the research conducted in the nation's laboratories and that conducted in the operational areas where the laboratory solutions ultimately find application. Specific technological areas to be examined include nuclear propulsion, missilry, aerodynamics, space technology, data processing, electronics, logistics and economics, and advanced navigational techniques.

For Jurther details please write

Operations Evaluation Group

Office of the Chief of Naval Operations Navy Department, Washington 25, D.C.

U.S. Citizenship Required.

OPERATIONS EVALUATION GROUP

like many other areas of applied mathematics in which interest has waned (except perhaps from the computational point of view), the determination of the scattering and diffraction of waves has received continual stimulation and interest because of the elegance and depth of the basic equations and also because at each stage the increased understanding of the theory has led to new practical applications which in turn made further demands on the theoretical interpretation. Professors King and Wu have not attempted to write an encyclopedia on this topic. They have rather provided a broad and thorough description of research in the topics of the scattering and diffraction of electromagnetic waves as carried out at Harvard. This has been done in such a way that the results are easily carried over to acoustical as well as electromagnetic problems and the authors have succeeded in illuminating most of the significant aspects of these fields of activity.

One of the valuable aspects of their work is the attention paid to the relation between the idealized and physically realizable problems with special reference to experimental techniques and their theoretical interpretation. The book contains extended discussions of the diffraction and scattering by circular cylinders and this is followed by similar though not quite as lengthy descriptions of the effect of other obstacles (spheres, elliptical cylinders, discs, strips, etc.) and of aperture transmission. The final section of the book is concerned with experimental problems.

Among the features worthy of note are the thorough description of Fock's method and of Wetzel's higherorder approximations.

The authors have been mainly concerned with analytical aspects of the problem and have summarized these felicitously and in a manner which lends itself both to theoretical and experimental application. Symmetry properties and in particular Babinet's principle are only briefly mentioned and problems of finite conductivity are not considered. By virtue of carefully eschewing detailed calculations and by concentrating on physically significant results, Professors King and Wu have produced a book which is valuable both to the worker in the field and to the scientist interested in obtaining a thorough review of it.

American Universities and Federal Research. By Charles V. Kidd. 272 pp. The Belknap Press of Harvard U. Press, Cambridge, Mass., 1959. \$6.00. Reviewed by C. Kittel, University of California at Berkeley.

THIS book surveys the effect of federal research funds in universities. Mr. Kidd studied government-university relations under a Rockefeller Public Service Award; he is now head of the Office of Research Planning of the National Institutes of Health. His subject is naturally of interest to many physicists. Federal research funds are directly responsible for the great flowering of physics in the United States since 1945. Quite apart from high-energy physics, the res-

onance and low-temperature fields were developed for many years almost entirely in universities. The gift of independent support to the active vigorous young is probably the main accomplishment of the federal activity. The reader of the *Physical Review Letters* witnesses the high level of intellectual activity fostered by the wide distribution of the means of research. Summer salary support makes academic careers attractive financially, and this form of support has helped build up many faculties.

There is a wide spread in the relative effectiveness of the different federal agencies in research support. Almost everyone can find support. It is not always easy to find support to do the research one wants to do, with no medicine shows, no trumped-up progress reports, no inventories, and no nonsense. Generally speaking, specific programs initiated by the sponsoring agencies appear to have been considerably less effective than those initiated at the working level; the better proposals involve more physics than either real estate or the movements of men on the tides of interdisciplinary fantasies.

The book attempts to document a picture which, at the administrative level, the author quite possibly understands as well as anyone in the country. The documentation is valuable, but at critical points it is sometimes in the form of quotations from unnamed individuals at unnamed institutions. The author could have given, in a single chapter, a penetrating account of the virtues and defects of the research policies of particular government agencies—but he does not do this. Both the government and the scientific community could profit from a franker discussion than we find here.

Electron Physics: The Physics of the Free Electron. By O. Klemperer. 248 pp. (Butterworths, England) Academic Press Inc., New York, 1959. \$7,00. Reviewed by J. Arol Simpson, National Bureau of Standards.

WHEN an author undertakes to write an undergraduate text on a subject usually covered in several postgraduate courses, he embarks on a dangerous endeavor. Unfortunately, no amount of care or effort on the part of the author and his publisher in providing well-thought-out problems or excellent illustrations can overcome these dangers, as this book illustrates.

There is the danger of excessive condensation; here all electron emission phenomena are covered in a single page. There is the danger of oversimplification; here the focal properties of a uniform magnetic field are derived by inspection from the cyclotron period. There is the danger of quoting results a priori when the connection is not obvious; the Abbe sine condition which is used for the derivation of maximum spot density is applied to electron optics. There is the danger of emphasizing experiments chosen for their ease of comprehension rather than their soundness or historical importance; here the Rupp diffraction from ruled gratings