physical significance. Professor Mercier, in the volume under review, has presented a systematic formal treatment of classical mechanics of both particles and fields.

The first two chapters deal with the Lagrangian formalism applied to particles and fields, respectively. This procedure is repeated in Chapters 3, 4, and 5 with respect to the Hamiltonian canonical formalism. There is a long chapter on transformation theory. Much of the material will of course be found in the standard treatises, but it is organized with unusual coherence and generality. Thus relativity is introduced very early, and tensor analysis is used freely. Probably the outstanding value of the book is to be found in the treatment of field theory, in which Lagrangian and Hamiltonian densities are clearly introduced and discussed. The applications here are, to be sure, limited largely to electromagnetic fields and there is no discussion of deformable solid media or hydrodynamics. The basic ideas of phase space and statistical mechanics are exhibited in connection with the canonical method.

An interesting feature of the treatment of transformation theory is the stress on both the nonhomogeneous formalism in which the time t always appears as an independent parameter and the homogeneous formalism in which time is considered simply as one among the generalized coordinates q_n of the system in question. The latter leads directly to a consideration of charge, parity, and time inversions and the so-called CPT theorems.

The text is illustrated by numerous problems, mainly mathematical in character. The style though in general clear is somewhat compact and abbreviated and there are some stylistic quaintnesses. The book should prove useful to theoretical students who can handle advanced analytical mechanics and are on their way to research in quantum mechanics.

Solid State Physics: Advances in Research and Applications, Vol. 9. Edited by Frederick Seitz and David Turnbull. 548 pp. Academic Press Inc., New York, 1959. \$14.50. Reviewed by Hans Jaffe, Clevite Research Center,

VOLUME 9 of Solid State Physics covers a number of divergent but important subjects. Not all of these enjoy the limelight of present-day solid-state activity. This very diversity makes the volume stimulating to study.

The first article, by H. C. Wolf (Stuttgart), 80 pages, deals almost entirely with the near-ultraviolet absorption and fluorescent spectra of aromatic hydrocarbons. It gives a leisurely description of experimental methods and results, followed by a rather qualitative theoretical treatment. The exciton concept is used only with considerable caution. A chapter by W. W. Scanlon (Naval Ordnance Laboratory), 57 pages, gives an excellent account of the semiconducting properties of lead sulfide and its isomorphs, lead selenide and lead telluride, in whose study the author has had a prominent part. These crystals are chosen as examples for polar

Introducing a mos

NEARLY 100 VOLUMES ARE GROUPED IN THE FOLLOWING TOPICS

- 1 MATHEMATICAL TECHNIQUES. H. Jones, Editor
- 2 CLASSICAL AND QUANTUM MECHANICS, Per-Olaf Lov Editor
- 3 ELECTRONIC STRUCTURE OF ATOMS, Clyde Hutchinson Editor
- 4 Molecular Binding. Editor to be appointed
- 5 Molecular Properties. (a) Electronic, (b) Non-tronic. Editors to be appointed
- †6 KINETIC THEORY OF GASES. E. A. Guggenheim, Edit
- 7 CLASSICAL THERMODYNAMICS. D. H. Everett, Editor
- 8 STATISTICAL MECHANICS. J. E. Mayer, Editor
- 9 TRANSPORT PHENOMENA. J. E. Mayer, Editor
- 10 THE FLUID STATE. J. S. Rowlinson, Editor
- 11 THE IDEAL CRYSTALLINE STATE. M. Blackman, Editor
- 12 IMPERFECTIONS IN SOLIDS. A. B. Lidiard, Editor
- 13 MIXTURES, SOLUTIONS, CHEMICAL AND PHASE EQUIUM
 M. L. McGlashan, Editor
- 14 PROPERTIES OF INTERFACES, D. H. Everett, Editor
- 15 Equilibrium Properties of Electrolyte Solution R. A. Robinson, Editor
- 16 Transport Properties of Electrolytes, R. H. St. Editor
- 17 MACROMOLECULES. C. E. H. Bawn, Editor
- 18 DIELECTRIC AND MAGNETIC PROPERTIES, Willard S Editor
- 19 GAS KINETICS. A. Trotman-Dickenson, Editor
- 20 SOLUTION KINETICS. R. M. Noyes, Editor
- 21 SOLID AND SURFACE KINETICS. F. C. Tompkins, Edito
- 22 RADIATION CHEMISTRY. R. Livingston, Editor

†Volume 1

ELEMENTS OF THE KINETIC THEORY OF GASES

by E. A. GUGGENHEIM, M.A., Sc.D., F.R.S.

This volume describes in an elementary way the most important features of the kinetic theory of gases, and as such prove most useful to physical chemists and chemical physical who would not normally have a standard of mathema necessary for the more advanced treatments.

The author is known for his researches and several books thermodynamics and related matters, but this is his first bon non-equilibrium properties.

June, St.

Write now for full details of this outstanding series

important and authoritative new series . . .

EDITORS-IN-CHIEF

A. GUGGENHEIM, F.R.S. Reading

J. E. MAYER, California, La Jolla

F. C. TOMPKINS, Imperial College, London

Chairman of the Editorial Advisory Group

I. R. MAXWELL, Publisher at Pergamon Press

e International Encyclopedia of Physical Chemistry and Chemical Physics is to an authoritative and comprehensive presentation of the domain of knowledge is hies between and overlaps chemistry and physics. Each volume—between and 100 volumes are now planned—will be written primarily for the physical mist and chemical physicist but many volumes will be of value to other sciens: to chemists and physicists generally, and also to biochemists and biophysicists. perimental details of an essentially practical nature are not emphasized in the cyclopedia, but a thorough background of the theoretical aspect of techniques is laded so that these may be understood and applied to the fullest extent.

The Editors-in-Chief have arranged the subjects to be included in the Encyclobia in some twenty groups called "General Topics". These groups were chosen establish continuity and coherence within the Encyclopedia so that the relationary of each volume to the others is manifest. Each volume is restricted to about pages as each has a large measure of independence and may be purchased arately without reference to other books in the series.

The Encyclopedia is international in character and will be produced to the highest increased and editorial standards. It is being written in English as this is the guage understood, if not spoken, by the greatest number of scientists.

When completed the Encyclopedia will be a compendium and synthesis of physichemistry and chemical physics as these subjects stand at mid-century. It will a landmark in scientific publishing and will be used for many years by scientists, iversity teachers and students.

EMBERS OF THE HONORARY EDITORIAL ADVISORY BOARD

N. Agar, Cambridge; R. M. Barrer, London; C. E. H. Bawn, Liverpool; N. S. Bayliss, stern Australia; R. P. Bell, Oxford; C. J. F. Böttcher, Leiden; F. P. Bowden, Camdge; G. M. Burnett, Aberdeen; J. A. V. Butler, London; C. A. Coulson, Oxford; S. Courtney-Pratt, Cambridge; D. P. Craig, London; F. S. Dainton, Leeds; C. W. Davies, mdon; B. V. Derjaguin, Moscow; M. J. S. Dewar, Chicago; G. Duyckaerts, Liège; D. Eley, Nottingham; H. Eyring, Utah; P. J. Flory, Mellon Institute; R. M. Fuoss, ale; P. A. Giguère, Laval; W. Groth, Bonn; J. Guéron, Paris; C. Kemball, Queen's, 'lfast; J. A. A. Ketelaar, Amsterdam; G. B. Kistiakowsky, Harvard; H. C. Longuetggins, Cambridge; R. C. Lord, Massachusetts Institute of Technology; M. Magat, Paris; Mecke, Freiburg; Sir Harry Melville, D.S.I.R., London; S. Mizushima, Tokyo; J. A. trison, N.R.C., Ottawa; R. S. Mulliken, Chicago; R. G. W. Norrish, Cambridge; R. S. tholm, London; J. T. G. Overbeek, Utrecht; K. S. Pitzer, California (Berkeley); J. R. att, Chicago; G. Porter, Sheffield; I. Prigogine, Brussels (Free University); R. E. Richds, Oxford; Sir Eric Rideal, London; J. Monteath Robertson, Glasgow; E. G. Rochow, arvard; G. Scatchard, Massachusetts Institute of Technology; Glenn T. Seaborg, Calimia (Berkeley); N. Sheppard, Cambridge; R. Smoluchowski, Carnegie Institute of echnology; H. Stammreich, Sao Paulo; E. W. R. Steacie, N.R.C., Ottawa; Sir Hugh aylor, Princeton; H. G. Thode, McMaster; H. W. Thompson, Oxford; D. Turnbull, E., Schenectady; A. R. J. P. Ubbelohde, London; H. C. Urey, California (La Jolla); J. W. Verwey, Phillips, Eindhoven; B. Vodar, Laboratoire de Bellevue, France; M. Kent Ilson, Tufts; W. F. K. Wynne-Jones, King's College, Newcastle-upon-Tyne.

22 East 55th Street, New York 22, N.Y.

PHYSICISTS

for Space Oriented Projects in 2 Key Fields

- PLASMA PHYSICS
- SOLID STATE PHYSICS

With MELPAR'S greatly expanding endeavors in the field of Plasma Physics and Solid State Physics, Senior level opportunities have now developed in both of these challenging and rewarding fields.

Plasma Physics Openings in this branch exist for physicists with comprehensive experience in plasma physics or some closely allied field. Education level of Ph.D., or its equivalent, is desired. Research programs include re-entry studies, plasma propulsion, direct conversion, microwave plasma generators and amplifiers, electronic scanning, and general plasma diagnostics.

Solid State Physics In this branch, openings exist for physicists capable of developing original theoretical work. Education level of Ph.D., or its equivalent, is desired. Research programs include activity involving IR and UV detectors, electroluminescence, thermoelectricity, and general solid state physics.

Write to:

FRANK J. DRUMMOND, EMPLOYMENT MANAGER

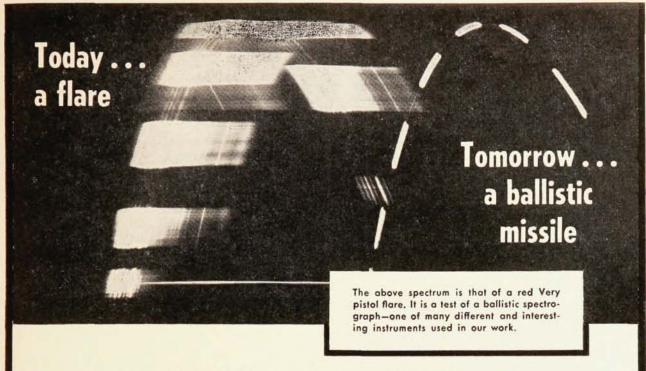
MELPAR INC.

A Subsidiary of Westinghouse Air Brake Company

3331 Arlington Boulevard, Falls Church, Virginia

In Historic Fairfax County
10 miles from Washington, D. C.

crystals because their low-energy gap and hence large electric conductivity make measurements relatively easy. The word "polar" in the title of this article denotes a compound semiconductor with considerable difference in electronegativity of the components. The reviewer would prefer this word to be reserved for compounds which are not centrosymmetric, especially the III-V and II-VI semiconductors of sphalerite and wurtzite type.


In a chapter on static electrification of solids, 58 pages, D. J. Montgomery (Michigan State University) brings quantum theory to bear on the subject of the very first experiments in electricity. His basic assumptions are equality of the Fermi levels for the interior of substances in frictional contact, and partial leakage of charge immediately after contact separation by tunnel effects. So far, theory provides a program rather than a set of predictions that can be checked by experiments. Those who remember triboelectric series in their ancient textbooks showing metals generally on the negative end (gaining electrons on rubbing) will be reassured by recent experiments which spread the metals within the series, those of low work function being near the positive end. Some modern polymers, including polyethylene and Teflon, become negative by rubbing even with platinum.

E. Heer (University of Rochester) and T. B. Novey (Argonne) review the interdependence of solid-state physics and angular distribution of nuclear radiation in 55 pages. Emphasis is placed on the angular correlation of successive nuclear radiation events. While most of the work described was undertaken to obtain information on properties of nuclei, the authors believe that these methods are useful for the determination of magnetic fields or electric field gradients at the position of the radioactive nucleus.

A. H. Kahn and H. Frederikse (National Bureau of Standards), 34 pages, give an introduction to the theory of oscillatory susceptibility and transport properties. Experimental data relate largely to bismuth.

Andre Guinier (Paris), 104 pages, discusses the study of heterogeneity of solid solution metal crystals by x-ray diffraction, a field to which he has been a leading contributor. The scope of this article is indicated by its first paragraph: "In this article, we will discuss the structure of metallic solid solutions which, to a first approximation, are homogeneous, disordered substitutional solutions. More precisely, the alloy appears as a single phase in classical examinations with microscopy or x-rays. We will consider only the case in which no long-range order exists; thus we will not treat the order-disorder transition, which has been the object of a previous article of this series." The disorder caused by substitution of atoms of different size is not cumulative over distances large compared to the atom diameter. It causes diffuse scattering of x rays but the Bragg reflections remain sharp. Guinier's article gives a great deal of information on the physical properties and kinetics of the systems studied by his methods.

The concluding article by D. S. McClure (RCA), 127

OUR ENGINEERING DEPARTMENT HAS IMMEDIATE OPEN-INGS AT ALL LEVELS FOR QUALIFIED ENGINEERS IN:

- * SPECTROSCOPY
- * ASTROPHYSICS
- * PHYSICAL OPTICS
- * DATA ANALYSIS

Inquiries Invited For Field And Laboratory Positions

FOR A CONFIDENTIAL INTERVIEW

Write or Call Collect: Mr. Edward R. Tarczali, Personnel Manager

FIRESIDE 8-5381 (Stamford, Conn.)

or call our New York number: MOtt Haven 5-1634

Barnes

Ingineering Company

30 Commerce Road, Stamford, Connecticut

Accent is On the Individual at ALCO...

A pioneer designer and manufacturer of nuclear thermal equipment. Active programs in the SM-1 operation and Core I loading, SM-1A and PM-2A final engineering and startup, and SM-2 design and development, as well as Core I procurement. Small groups providing many individual opportunities. Liberal benefits include company assistance in furthering educational development at nearby universities.

REACTOR ANALYSTS & REACTOR PHYSICISTS

To establish core nuclear and thermal characteristics.

REACTOR PHYSICISTS

To perform shielding and hazards analyses.

HEAT TRANSFER & FLUID FLOW ENGINEERS

To perform analyses of fluid dynamics, thermodynamics and heat transfer phenomena and to perform steady and transient thermal stress calculations.

College degree with several years' experience required

Some supervisory positions available

Please send complete resume and salary requirements in confidence to: G. Y. Taylor, Administrative Services

Schenectady 5, New York

pages, once more deals with electronic spectra, but this time of ions or ion complexes subject to strong crystal-line fields. The article does not include spectra involving valence electrons, which must be treated by band theory, and is thus concerned primarily with salts of the transition metals and rare earths. The theory is developed by means of symmetry group representation but remains semiempirical to account for the large amount of experimental data available. The experimental part is quite readable without complete study of the theory.

Few individuals will read this volume from cover to cover, but considering the excellence of writing, the high standard of print and illustrations, and the reasonable price this is another "best buy" in this series.

Struktur der Materie. Vol. 2 of Lehrbuch der Theoretischen Physik (2nd Revised Ed.). By Walter Weizel. 1793 pp. Springer-Verlag, Berlin, Germany, 1958. DM 88.00. Reviewed by Nicholas Chako, Queens College.

A BROAD field of physical phenomenon based on the microscopic theory of matter is dealt with in Prof. Weizel's second volume on theoretical physics. He treats in a comprehensive manner the mathematical analysis of a variety of topics ranging from atomic, molecular, and nuclear structure and spectra to thermal, electrical, and other properties of matter, all centered around the principles of quantum mechanics.

Broadly speaking, the treatise may be classified into four main divisions: (a) quantum mechanical analysis of atomic and molecular spectra, including Dirac's theory, (b) field theory and nuclear structure, (c) quantum chemistry and statistical mechanics, and (d) thermal, electrical, and other properties of the gaseous, liquid, and solid states of matter. There are also chapters on ion and electron optics, crystal structure, lattice theory of metals, and semiconductors.

In the first part, the author stresses the mathematical methods for the determination of atomic and molecular spectra and places less emphasis on the physical and mathematical foundations and development of quantum mechanics and the description of the results deduced from the theory. This part does not deviate very much from other texts on this subject (there are a few exceptions) where physical concepts and interpretations of the results of mathematical analysis, as well as philosophical implications, are relegated to a secondary role. This is to be regretted, since the mathematical treatment of these problems is clearly and thoroughly presented. On the other hand, the chapters devoted to field theory are well executed and constitute one of the best presentations of the subject to be found in any of the existing treatises of this kind. The sections on nuclear structure (physics) contain a good introduction for further reading. There is also an extensive treatment of molecular phenomena and chemical bonds and quantum statistics. In the fourth part, the author discusses with considerable care thermal, electrical, and optical properties of gases and solids, transport phe-