#### Important New McGraw-Hill Books



### QUANTUM THEORY OF ATOMIC STRUCTURE Volume I

By John C. Slater Massachusetts Institute of Technology

Ready in July

The first of two volumes (Volume II will be published in September). Volume I will be useful as a text for elementary courses on quantum theory and atomic structure. It will also be a valuable reference work for theoretical physicists and chemists dealing with atomic theory. Numerous problems are included.

### SOME MATHEMATICAL METHODS OF PHYSICS

By Gerald Goertzel and Nunzio Tralli both of the Nuclear Development Corporation of America

300 pages, \$8.50

This modern book presents a common set of mathematical techniques as useful background for a variety of fields of theoretical and applied physics: quantum mechanics, acoustics, electromagnetic theory, reactor physics, etc. The authors do not try to cover the entire field of mathematical methods of physics. Rather, they attempt to give non-mathematicians a well-rounded and thorough indication of the basic concepts involved in the study of linear systems.

McGraw-Hill Book Co., Inc.

Send for copies on approval

330 West 42nd Street - New York 36, N. Y.

# Books

Principles of Thermodynamics and Statistics. Vol. 3, Part 2 of Handbuch der Physik. Edited by S. Flügge. 678 pp. Springer-Verlag, Berlin, Germany, 1959. DM 160.00 (subscription price DM 128.00). Reviewed by Rolf Landshoff, Lockheed Missiles and Space Division.

UR knowledge that heat can be put to work dates back to the 2nd Century B. C. when Hero of Alexandria devised the first steam apparatus. Around 1700 steam advanced from driving a mere toy to driving a useful machine and by 1780 Watt had developed a basic form of the modern steam engine. The science of thermodynamics which grew out of this was brought into being by Carnot's first investigation (1824) of what we now call the second law. The first law was formulated about 20 years later following the discoveries by Mayer and Joule. Kinetic theory can be traced back to Daniel Bernoulli's Hydrodynamica (1738) in which he postulates that a gas is composed of particles, stating that heat may be considered as an increasing internal motion of these particles. This idea led later at the hands of Maxwell, Boltzmann, Gibbs, and others to the statistical interpretation of the laws of thermo-

The venerable history of thermodynamics and statistical mechanics has produced a well-established body of knowledge which is presented by E. A. Guggenheim in the first of six parts of this new volume of the Handbuch. The presentation is concise "with emphasis on the most convincing and most powerful methods of approach". A selection on this basis is clearly a matter of taste and in the field of statistical mechanics Guggenheim chooses to follow closely the approach by Tolman. There is of necessity a considerable overlap between Guggenheim's "Thermodynamics, Classical and Statistical" and A. Münster's article "Prinzipien der Statistischen Mechanik". The latter article, however, covers the subject much more thoroughly, looking at it from many points of view. Without going into detailed arguments it presents a review of the most important investigations of both principles and methods. The article concludes with an interesting general discussion of fluctuations and of phase transitions.

The logical structure of thermodynamics is traced by G. Falk and H. Jung, joint authors of the article "Axiomatik der Thermodynamik". The presentation differs markedly from the traditional approach of Carathéodory by assigning the temperature concept a less central position. It is interesting to note the contrasting points of view expressed in Guggenheim's statement "that temperature is the most important conception in thermodynamics" and in Falk and Jung's thesis that a consistent analysis of the physical situation demonstrates that there is no need to use the temperature concept. Although they claim this to be true in principle they do, of course, introduce the temperature as a useful secondary concept and they also show that the concept of a negative temperature recently introduced by N. F. Ramsey fits into the proposed formalism.

It is known from classical thermodynamics that the direction of irreversible processes such as electrical and heat conduction, chemical reactions, etc. insures an increase of the entropy of closed systems. The theory can be extended to relate the rate of such processes to the rate of the entropy increase. This formalism is discussed by J. Meixner and H. G. Reik in their article "Thermodynamik der irreversiblen Prozesse". This is a phenomenological theory which centers around linear equations—similar to Oh.n's law—between various fluxes and forces. Reciprocity relations between the coefficients of these equations which have been developed by Onsager are derived from kinetic theory. As an application the effect of irreversible processes on sound propagation is investigated.

Every article of this volume touched upon so far makes extensive use of statistical concepts. Anyone capable of reading this book has certainly acquired some familiarity with these concepts and understands them intuitively. The mathematician, considering statistics as being in his bailiwick, rightfully frowns upon intuition as an ambiguous point of departure. To provide a solid basis for the physicist who wishes to employ statistical concepts, Alladi Ramakrishnan undertakes in the last article "Probability and Stochastic Processes" a presentation of stochastic theory. The emphasis is on results which the physicist can use "without being diverted by mathematical details or trammelled by the demands of rigour".

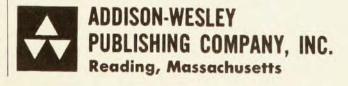
In toto this is a very useful collection of articles worthy of the reputation of the *Handbuch*. It is remarkably up to date with ample references to the original literature. It is an interesting sidelight that both Guggenheim and Ramakrishnan have decided that certain thoughts they wanted to express have been expressed to perfection by previous authors, i.e., Tolman and Khinchin; with permission of the publishers they have incorporated the respective passages into their texts.

The Magnetodynamics of Conducting Fluids: Symp. Proc. (Palo Alto, Calif., Nov. 1958). Edited by Daniel Bershader. 145 pp. Stanford U. Press, Stanford, Calif., 1959. \$4.50. Reviewed by J. Gillis, The Weizmann Institute of Science.

THE development of magnetohydrodynamics during recent years has been so vigorous and on so wide a front that any textbook on the subject would probably be out of date before it was printed. Cowling's excellent little book was a notable exception, but that is chiefly

### Ready in August

## An Introduction to Quantum Mechanics


BY ROBERT H. DICKE, Princeton University AND JAMES P. WITTKE, R. C. A. Laboratories

An introduction to the physical concepts and mathematical formulations of nonrelativistic quantum mechanics, designed as a textbook for courses at the advanced undergraduate-graduate level. A knowledge of calculus and some familiarity with differential equations is assumed, as well as knowledge of basic undergraduate-level physics, including classical mechanics.

The opening chapters of the book suggest how the basic concepts of classical mechanics must be altered to explain many atomic-scale phenomena, and lay the groundwork for the more formal, postulational approach to quantum mechanics which follows. This part of the book, in which the emphasis is on a grasp of the fundamental principles and their mathematical formulation, with a minimum of involved mathematical manipulations, forms an ideal introduction to the subject for the undergraduate.

The concluding section, of eight chapters, represents a considerable broadening of the viewpoint and of the scope of the problems that can be handled. Of especial importance is the final chapter, dealing with quantum statistical mechanics, wherein techniques that are playing an ever-increasing role in modern physics are developed. Throughout the text, emphasis is given to algebraic techniques, and their power and elegance are clearly shown.

c. 480 pp, 74 illus, to be published August, 1960— \$9.75

