approach to the subject, however. A general introduction on absorption and emission processes is followed by a description of the ammonia maser and other gas devices. The general principles of electron resonance in the solid state are then explained and this is followed by separate chapters on the two-level and three-level masers. A final chapter on traveling-wave masers together with a brief reference to parametric amplifiers in the appendix introduce the newest developments in this field.

It is a book which is well balanced and written in a logical way which is easy to follow, and can be strongly recommended to anyone entering this field whether as a solid-state physicist or as an engineer.

College Physics (3rd Revised Ed.). By Robert L. Weber, Marsh W. White, Kenneth V. Manning. 640 pp. McGraw-Hill Book Co., Inc., New York, 1959. \$7.50. Reviewed by Grant O. Gale, Grinnell College.

THE third edition of a text as widely used as Weber. White, and Manning is almost perforce a finished piece of workmanship. The fact that the earlier editions were used in over a hundred colleges and transcribed on tape for the blind testifies to the general desirability of the text. For this reason this review will confine itself largely to the changes found or not found in the new third edition.

The size and format of the book were changed to an attractive double column page with smaller tabular arrangements and many illustrations reduced in size without loss of detail. The general appearance of the book is improved with the attractive etchings of the Nobel prize winners in physics kept at the chapter headings. The conventional compartments of mechanics, heat, etc. are maintained and each is introduced with an appropriate full-page picture with superimposed graphs, charts, etc. A rather unique feature is the treatment of the inside of the front and back covers with a series of sketches and brief statements portraying the history of physics from the Babylonians to nuclear energy.

The preface states that "this edition continues the inclusion of the topics needed for the conventional courses, together with selected material in atomic and nuclear phenomena, relativity, solid-state physics, and quantum-physics phenomena." The result of attempting to do so much has resulted in a book which is somewhat "encyclopedic in character" in spite of a disclaimer in the preface. The mathematical preparation expected from the students varies from an illustrative problem (page 207) showing how to change Fahrenheit temperatures to centigrade through to calculus used only in the appendix.

The many good features of earlier editions are kept, such as the careful use of significant figures and the algebraic manipulation of units as well as numbers. This, I found, made the students dimensionally alert and conscious. The earlier editions had a clarity of expression and an uncluttered style that the students found easy to read and understand. This has been kept

and many a student finds it "easier to learn from Weber, White, and Manning". As expected, there are very few misstatements, knowing the meticulous care with which the authors avoid these. I would take exception to the first law of motion as stated on page 34: "There is no change of motion of a body unless a resultant force is acting upon it." I think it is better stated in the summary as an "unbalanced or net force". One can have the resultant of two or more forces be zero (see bottom of p. 18) and produce no acceleration. In the treatment of the Carnot cycle (p. 229) there has been some improvement and the notation has been changed from H to O for the heat energy received and discharged, but the student is still confused between heat energy and work all represented by areas. To the student the area between an isotherm AB and the x-axis is meaningless because it may be any value. There are, however, few examples of this kind in the text.

From its appearance I was expecting an entirely new book with completely new emphasis oriented toward modern physics. I was disappointed in this respect in the third edition. It is essentially the old book with the deficiency of modern physics compensated for by a few appended chapters. For example, the whole treatment of heat and temperature does not give the student any feeling that heat is a statistical phenomenon. The statement "Heat is a form of energy that molecules of matter possess because of their motion" (p. 200) is true, but the concept that one or two moving molecules is not heat is certainly not clear. In much the same vein, the whole of the chapter (45) on spectra may be read and the questions discussed without any inkling that spectra have something to do with atomic structure and the Bohr theory. This is rather inadequately done in a separate single paragraph (50.4). The authors apparently recognize this deficiency, for in the preface they say "Material sometimes referred to as 'modern physics' has been included with conventional topics at various places throughout this edition. The contemporary physics section at the end of the book has been enlarged." And yet the section at the end of the book is labeled Modern Physics by a full-page illustration (569) rather than "contemporary"; the two are not quite the same. The Bohr atom was contemporary in 1926.

In spite of all these remarks the text is an excellent one. The problems are good, it is very teachable and the students like it. We all agree that a satisfactory first course in college physics cannot stretch all the way from the Babylonians to Nuclear Energy.

Recent Research in Molecular Beams. Edited by Immanuel Estermann. 190 pp. Academic Press Inc., New York, 1959. \$6.50. Reviewed by R. W. Hellwarth, Hughes Aircraft Company.

F OR the purpose of commemorating the seventieth birthday of Otto Stern, his friend and collaborator Immanuel Estermann has collected a random sampling of the best of current molecular beam research into the

... NEWS IS HAPPENING AT NORTHROP

How Landing Systems from Radioplane Meet the Demands of High Altitudes, Increased Bail-out Speeds, and Recovery from Space

by Ed Ewing, Engineering Specialist
Assigned to Project Mercury
at Radioplane Division, Northrop Corporation

In high-speed bail outs, the opening process of the standard personnel parachute is a nylon explosion. The fate of the man with his body harness attached to the risers depends mainly on the magnitude of this opening shock and his body position when he receives it.

One example — an emergency ejection from a high-speed jet is a sudden thrust into the full blast of the airstream at speeds up to 800 miles per hour — enough to rip open most parachute containers and tear their contents to shreds. And because of the airman's disorientation during the shock of ejection, the most reliable system must place minimum dependence on human intelligence for its operation.

When the U.S. Naval Bureau of Aeronautics outlined its needs and set its requirements for an improved personnel parachute, Radioplane won the contract.

Radioplane took a new approach to the design and development of a canopy that would open just slowly enough to bring the shock within tolerable limits and at the same time open positively and dependably. Radioplane experimented with five different models, seven modifications and 270 dummy drop tests to produce the now-famous "Skysail"—the ring parachute with the unique saw-tooth profile.

Proved in more than 300 qualification jumps, "Skysail" opens one ring at a time starting from a small bubble in the crown. The leading edge of each ring bites into the air in a succession of deliberate step-by-step openings that takes an important fraction of a second longer than the explosion-like filling of the standard canopy. The resultant reduction in opening shock is between 35 and 50 per cent, the drag coefficient

is 20 per cent higher than that attained by other parachutes of equivalent opening force and stability.

"Skysail" proves to be the solution to a challenging phase of the jet age.

For the space age, Radioplane is already delivering "Ringsail"—the landing system for America's first man-in-space capsule—NASA'S Project Mercury.

As new needs and new challenges arise, the Radioplane scientist, specialist or engineer is in a position to develop and use his creative talents freely. Besides working on escape and landing systems, he engages in scope-widening studies in re-entry mechanics, hyper-environments and physics of materials. Radioplane fosters an atmosphere in which he is urged to develop new ideas and techniques in the missile, pilotless aircraft, and space recovery fields. With Radioplane's outstanding facilities, colleagues, and current programs to encourage him, horizons for the individual are wide at Radioplane. They are wide to allow outstanding ingenuity and creativity full range to advance.

Current papers by Northrop scientists and engineers include:

"Disintegration Barriers to Extremely High-Speed Space Travel" by Dr. Elliot T. Benedikt. "An Astrovehicle Rendezvous-Guidance Concept" by Norman V. Petersen, Robert Swanson and Leroy Hoover.

For copies of these papers and additional information about Northrop Corporation, write:

Department V6-1300-32, P.O. Box 1525 Beverly Hills, California

CURRENT INDICATOR AND INTEGRATOR

TWO instruments in ONE!

- Measures Currents from 1 Milliampere to 3 Millimicroamperes
- Integrates Input Current and Registers Accumulated Charge

MODEL A309A

The Model A309A Current Indicator and Integrator is a sensitive current indicator that also measures the total charge collected in a given length of time. Developed especially for use with high-voltage particle accelerators, such as the Van de Graaff generator, the instrument can be used in any application requiring the measurement of accumulated charge.

FEATURES

- Wide current range: 1 × 10⁻³ to 3 × 10⁻⁵ amp. in 12 switch settings.
- High accuracy: 1% of full scale.
- Internal calibrating current source to check proper operation.
- Front panel switch allows instrument to be used with current of either polarity,
- Pre-setting feature provides means of safeguarding against over-exposure.
- against over-exposure.

 Permits many experiments with particle accelerators that would otherwise be extremely difficult if not impossible.

Register readout gives digital accuracy on charge measurement.

COMPLETE
TECHNICAL
DATA AND
PRICES ON
REQUEST

NUCLEAR PHYSICISTS

The Nuclear Systems Division of The Marquardt Corporation, currently engaged in the development of a nuclear ramjet engine under Project Pluto, offers these outstanding opportunities for exceptionally qualified men:

SHIELDING PHYSICIST

To perform radiation heating and shielding evaluations of advanced reactor systems. MS or Ph.D. in Nuclear Engineering, Physics, or applicable experience, required.

NUCLEAR REACTOR PHYSICISTS

To solve analytical reactor physics problems and to apply transport and diffusion theory methods to specific reactor statics and dynamics problems. MS in Nuclear Engineering, Physics, plus applicable experience, required.

Send resume in confidence to: Floyd Hargiss, Manager, Professional Personnel 16555 Saticoy Street, Van Nuys, California

THE Marquardt

Corporate offices: Van Nuys, California CORPORATION Operations at: Monrovia, Pomona, Van Nuys, California and Ogden, Utah book, Recent Research in Molecular Beams. That current beam research can trace its beginnings more or less directly to Professor Stern and his students is pointed out by Estermann's brief description of Stern's work at Hamburg and its relation to the work described in the other nine papers that make up this volume. Although these papers cover only a small fraction of current molecular beam research, they are indicative of the variety and scope of the applications of beam techniques. The subjects range from chemical kinetics to the deflection of polarized neutron beams. The nature of the various articles is also diverse. The article covering rare isotope spectroscopy at Berkeley and V. Hughes' article on the measurement of the electron moment are clearly review papers, while Ramsey's article on resonance line shapes is new and specialized material. Since the volume was not intended to be a reference work, nor was it designed with any particular reader in mind, it is difficult to recommend on any specific basis. No doubt most active beamists will consider Recent Research in Molecular Beams to be a useful supplement to the standard references.

The Unity of the Universe. By D. W. Sciama. 228 pp. Doubleday & Co., Inc., Garden City, N. Y., 1959. \$3.95. Reviewed by E. J. Öpik, University of Maryland.

THE properties of our physical environment, such as inertia, are determined by the content of matter in the universe; inversely, the properties of the universe can be inferred from the behavior of local matter. These statements may serve as motto to this popular treatise in cosmology. The author does not pretend to have solved all the problems, but indicates what, in his opinion, is the most acceptable solution. This turns out to be the steady-state cosmology with continuous creation of matter, along the lines of Bondi, Gold, and Hoyle, to whom the book is dedicated.

Well written, it gives an intelligible, vivid, stimulating, and sometimes fascinating general account of the basic problems. This is said despite the reviewer being often unable to agree with the author's conclusions, especially when aesthetic rather than scientific judgment is involved. The presentation is somewhat incomplete and not always impartial. These qualities, however, do not lessen the aesthetic value of the book.

The historical side is carefully presented, and forerunners of modern concepts, such as Gauss, Maxwell, Tisserand, Mach, are given flashlight treatment. The first part of the book describes the historical development of the world picture over the ages, beginning with the Greeks. The second part is dedicated to modern interpretation, presented in the author's subjective coloration. The chapters are introduced by well chosen mottos; there are numerous diagrams and plates for the benefit of the lay reader.

There are a few technical shortcomings, such as the baffling scale of "absolute magnitude" in Fig. 12 on p. 48.

As an example of ideological bias, the author main-