to treat many problems (one-dimensional, etc.) in elegant form, the statistical interpretation of the principle of duality and the uncertainty principle of Heisenberg, and the study of discrete and continuous spectra representation of wave functions. Of particular interest is the chapter devoted to linear operators in Hilbert space and the vectors associated with dynamical observables following Dirac's ideas (bra and ket vectors) and the theory of representation of such quantities in matrix form, thus building a general mathematical formalism of quantum mechanics, usually left out in a first course, and the unification of Schrödinger's and Heisenberg's descriptions of quantum phenomena. The last third of the book deals mainly with the solution of Schrödinger's equation in three variables including such systems as the hydrogen atom, two-body problems, and scattering problems by various potential fields. The concluding chapter contains a detailed analysis of the harmonic oscillator in terms of matrix representation theory.

In order to make the book self-contained, several mathematical appendixes are included with the view of facilitating the mathematical parts of the book.

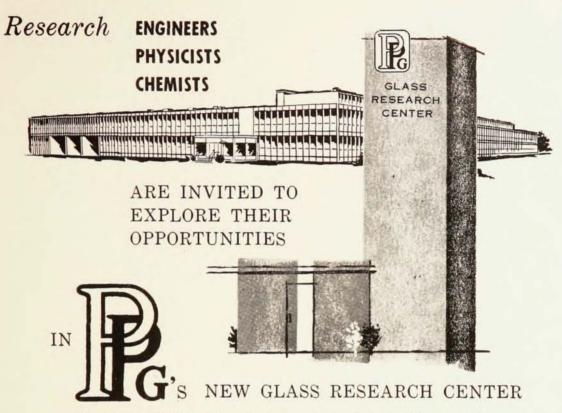
A good feature of this book is the inclusion of carefully selected problems not only illustrating the theory but also complementing the material of the text.

Finally, the reviewer would like to recommend the book to students taking a beginner's course in quantum mechanics, to teachers for broadening the scope of such courses, and also to research workers in understanding the principles and methods of quantum mechanics and for acquiring the necessary knowledge for an understanding of the advanced parts of the field.

Hypersonic Flow Theory. By Wallace D. Hayes and Ronald F. Probstein. Vol. 5 of Applied Mathematics and Mechanics, editor-in-chief F. N. Frenkiel. 464 pp. Academic Press Inc., New York, 1959. \$11.50. Reviewed by R. E. Street, University of Washington.

THE regime of hypersonic flow is difficult to define precisely. Normally it occurs when the Mach number of flight is large enough, which may be only 3 or might be as high as 10, for the real gas properties of the medium or else nonlinear terms in the equations of motion to become significant. In any case hypersonic flow theory is essentially nonlinear. While many good books on supersonic flow have appeared in the last few years, they have primarily been concerned with the linear theory and have contained only one or two chapters on hypersonic flow.

The present book is the first one on purely hypersonic flow to appear. Even though the subject of high-temperature gas dynamics has been omitted, there was still so much other material left that some topics are outlined rather than fully developed. In particular, the reader is assumed to have a thorough knowledge of compressible fluid dynamics such as the contents of the well-known texts by Liepmann and Roshko or Shapiro. The subject is approached from the fundamental point


of view of basic theory. By discussing the physics of the flow and outlining the mathematical development the book reads more smoothly, but the serious student will have to spend considerable time filling in the details. Applications are omitted and experimental data only used to compare with theory. The large number of references given will be useful as the reader is often referred to them for more information.

Some of the topic headings are as follows: shock waves, small-disturbance theory including similitude, Newtonian theory, constant-density solutions, thin shock layers, blunt body flows, shock-expansion theory, tangent-wedge and tangent-cone, viscous flows, weak and strong interaction, vorticity interactions, and finally free-molecule and rarified gas flows. As the first effort to collect and correlate all of these diverse topics, the book is quite an achievement. Considerable new results, due to both authors and as yet unpublished, are incorporated and help the exposition of several topics. In most cases many confusing concepts and statements which have occurred in the literature have been clarified but now and then there is a lapse and some arguments remain unclear. Actually some theories are not too well established, particularly in the case of viscous flow; but this is probably to be expected in a book which takes the reader right up to the forefront of a rapidly developing field. A few more diagrams in the right places would have helped, for instance, in the sections on similitude and strip theory and in the unsteady Newtonian flow. A slightly frustrating feature is that of some 280 references about 35 are unpublished documents which are not always available. In future editions these ought to be eliminated by incorporating the material into the book if it is still important enough.

Other and probably more simple texts will appear in this field but this one will no doubt remain as the principal reference and inspiration to the hypersonic aerodynamicist, at least until present theory is superseded by more complete and mature understanding of a very complex flow regime.

The Measurement of Power Spectra: From the Point of View of Communications Engineering (Reprinted from 1958 Bell System Tech. Jour.). By R. B. Blackman and J. W. Tukey. 190 pp. Dover Publications, Inc., New York, 1959. Paperbound \$1.85. Reviewed by T. Teichmann, Lockheed Missiles and Space Division.

EVER since the time of Bernoulli it has proved mathematically convenient and physically perspicuous to analyze mathematical functions and physical phenomena into series of suitably chosen vibrations. As the complexity of the problems examined increased, and as extraneous factors, such as inaccurate measurement and noise, began to make their appearance, it became clear that the significant frequency components could not easily or conveniently be obtained by simple

The Pittsburgh Plate Glass Company, a leader in its field, has recently dedicated a new Glass Research Center in Suburban Pittsburgh. Senior Staff Personnel are being sought for a new Division of Basic Engineering Research. This is now being formed with the aims of placing the traditional practices of an old-established industry on a scientific footing and to lay the foundations for creating new material and new processes.

The fields in which experience is sought include:

FLOW AND DEFORMATION OF VERY VISCOUS MATERIALS

STRESS ANALYSIS IN BOTH ELASTIC AND VISCO-ELASTIC SYSTEMS

FRACTURE * HEAT TRANSFER

MEASUREMENT OF INFRARED RADIATION

A particular need exists for a Senior Researcher with a strong background in Applied Mechanics or Applied Mathematics and a knowledge of visco-elastic stress analysis and or large deformations. He will initiate and conduct basic studies of the shaping of hot glass and stress analysis in glass, and participate in the technical direction of work on related topics.

For the Senior Researcher, a record of outstanding performance as an investigator is the main requirement. A Ph.D. or equivalent academic experience and a thorough technical grounding are also desired.

Positions at other levels of responsibility will also become open. The qualifications for these are an advanced degree or a good bachelors degree with academic or industrial research experience.

Send complete resumè in confidence to:

The Director Glass Research Center Pittsburgh Plate Glass Company Box 11472 Pittsburgh 38, Pensylvania PITTSBURGH PLATE GLASS COMPANY

Announcing

NEW VOL. 3 OF

GLASSER'S MEDICAL PHYSICS

Nothing in print parallels the scope and authority of Medical Physics. It covers every aspect of biophysics, each discussed by an expert in the field and all melded into a cohesive, smoothly balanced whole by Dr. Otto Glasser, editor-in-chief.

Now, through publication of Volume III, latest progress becomes available. Where required, Volumes I and II are brought up to date. In addition, the many new developments not previously covered are included. Just a few of the more than 1300 topics in Volume III are:

Absorption and energy transfer of microwaves and ultrasound in tissues; effects of electric currents on brain tissues; cosmic rays; medical electronics; genetics; pathologic effects of heat on man; isotopes; muscular contraction; nervous system; radiation; etc; etc.,

This great work is an essential reference to an almost unbelievable variety of biophysical knowledge: physical laws as related to living processes; development of physical methods and instruments; effects of physical agents on living tissues; latest application of physical theory and principles.

Editor-in-Chief, OTTO GLASSER, Ph.D., Head, Dept. of Biophysics, The Cleveland Clinic Foundation. Vol. 1: 1744 pages; 1382 illus; \$20.00; Vol. 2: 1227 pages; 978 illus; \$25.00; Vol. 3: approx. 750 pages; 595 illus; price to be announced. Special price for all volumes purchased as a set, \$55.00.

Available from medical-technical book stores or the publisher

The Year Book Publishers, Inc. 200 East Illinois St., Chicago II, III.

linear operations on the functions in question, all the more so since only finite samples are practically available. As a result, a number of techniques have been developed to obtain this information from various quadratic forms, of which the two most common are the autocovariance function and the power spectrum (the latter being the Fourier transform of the former).

The present book, actually a collection of several journal articles, treats in some detail the problems connected with the analysis of power spectra of finite samples (the practical case, mainly from the point of view of the communications engineer and statistician) though much of the analysis is applicable to broader classes of problems. The power spectrum method is by far the most potent way of treating these problems both because it is so amenable to illuminating physical interpretation and because of its relatively simple mathematical characteristics when subjected to simple filtering or statistical operations.

The presentation is divided between a general discussion (Part I), an appendix devoted to relevant aspects of Fourier techniques, and details of the various derivations (Part II). A good deal of time is devoted to the effects of various "lag windows" and their spectral counterparts for the analysis of records of finite length, which is, after all, the only practical way of estimating the actual spectra, and the authors have not skipped any relevant details. There are also sections on the duration requirements and the digital computer requirements.

A number of the Fourier applications and calculations will be of interest to readers not greatly concerned with the important practical necessities, and on the other hand many of the calculations given seem immediately applicable to practical problems. This reviewer found the statistical illusions rather delphic in character, and suspects that this aspect of the treatment will be inaccessible to many nonstatisticians; there is, however, enough else to prove useful to them.

Soviet Space Science (2nd Revised Ed.). By Ari Shternfeld. Translated from Russian by Technical Documents Liaison Office, Wright Patterson AFB. 361 pp. Basic Books, Inc., New York, 1959. \$6.00. Reviewed by H. Mendlowitz, National Bureau of Standards.

ALTHOUGH the book is entitled Soviet Space Science, the author also discusses the efforts of other countries in the field of astronautics. The book is addressed to the nonspecialist in space science, but the specialist will also probably find the book interesting.

The author starts with an introduction to the basic notions of kinematics and dynamics. He then discusses the engineering aspects of building and launching of rockets and satellites, communication with the earth, and the technological problems of return to the earth. There is a chapter devoted to the problems of putting a man in cosmic space, and there are discussions of