Books

Astrophysics IV: Stellar Systems. Vol. 53 of Handbuch der Physik. Edited by S. Flügge. 565 pp. Springer-Verlag, Berlin, Germany, 1959. DM 142.00 (subscription price DM 113.60). Reviewed by C. C. Kiess, Washington, D. C.

HE term "Stellar Systems" includes all groups of stars, large or small, that are distinguished by community of motion at the same distance from the observer. Other traits also may be characteristic of a system, but they are not necessarily unique or peculiar to it. Stellar systems may range in complexity from the open star-clusters, with relatively few members, and the globular star-clusters of our own galaxy, to the multitudinous clusters and galaxies external to our galactic system, and extending to regions of space as far as modern telescopes can penetrate. In the fourth volume of the Encyclopedia of Physics to be devoted to astrophysics, the present state of our knowledge concerning these systems is presented in fourteen articles of which all are written in English except the last two, which are in German.

The first two articles, dealing with the kinematical basis of galactic dynamics and galactic dynamics, are by F. K. Edmondson and B. Lindblad, respectively. In them are presented and interpreted the equations that describe the motions of and within a cluster, and the forces that govern these motions. The types of clusters and their physical characteristics, to which the mathematical formulations apply, are described in the article on star clusters by Helen S. Hogg.

Within scarcely more than a decade much new knowledge of the structure of our galaxy, and also of external galaxies, and of the distribution of matter within them, has been acquired from radio-wave observations. These topics are treated in three articles: "Radio-frequency Studies of Galactic Structure" by J. H. Oort, "Discrete Sources of Cosmic Radio Waves" by R. H. Brown, and "Radio Frequency Radiation from External Galaxies" by B. Y. Mills.

The remaining articles of the book are devoted to the galactic systems external to our own galaxy. At first believed to be relatively few in number they are now known to exist in astonishingly large numbers, so large that when counts of present surveys are completed their numbers will rival the numbers of stars within a single galaxy.

Two articles by G. de Vaucouleurs discuss classification and morphology of external galaxies and general physical properties of external galaxies. Likewise, F. Zwicky contributes two articles on multiple galaxies and clusters of galaxies, which indicate that galaxies can be associated in families or groups much as are the individual stars in the clusters of our galaxy. This almost unbelievably vast number of galactic systems, of wide range in magnitude, makes it necessary to apply statistical methods to the large-scale organization of the distribution of galaxies, the subject of the article contributed by J. Neyman and Elizabeth L. Scott.

The vastness of the universe and the number of its components logically invite questions concerning its cosmogony and the philosophical meaning of it all. These matters are discussed in "Distance and Time in Cosmology: The Observational Data" by G. C. Mc-Vittie, and in the two final articles, "Newtonsche und Einsteinsche Kosmologie" and "Andere kosmologische Theorien" by O. H. L. Heckmann and E. Schücking. From a reading of them one gets the impression that the number of cosmological theories is inversely proportional to the observational data on which they are built. A few data bolstered by many assumptions seem to suffice for a theory. This is, perhaps, as it should be; and it is comforting to know that the Newtonian and Einsteinian mechanics are not too far apart in their descriptions of the universe, especially in our immediate neighborhood of space.

Programming for Digital Computers. By Joachim Jeenel. 517 pp. McGraw-Hill Book Co., Inc., New York, 1959. \$12.00. Reviewed by J. Gillis, The Weizmann Institute of Science.

"PLEASE, Sir, he's cleaning the back-parlour window."

"So he is," rejoined Squeers. "We go upon the practical mode of teaching. C-L-E-A-N, clean, W-I-N-D-E-R, window. When the boy knows this out of book, he goes and does it."

The Dickensian account of how one man taught the art of spelling is a perilously accurate description of how many present-day users of digital computers originally learned their programming. For such people it will always be valuable to go back to the beginning and see the system which underlies many of the things which they have laboriously discovered for themselves by the practical mode.

This beautifully printed and eminently readable book can provide them with just what they need, while at the same time it can be an excellent introduction to the art of programming for the beginner. The material in it is standard and the presentation extremely lucid. The author has succeeded well at the difficult task of keeping his language sufficiently general to be applicable to almost any digital machine, and yet manages to say something practical and useful.

The book begins with an account of the general characteristics of digital computers and then continues with the principles and methods of programming. The examples are worked out in great detail, and the material

NEW AND NOTEWORTHY BOOKS FROM VAN NOSTRAND

SPACE FLIGHT, Volume 1: Environment and Celestial Mechanics

By Krafft A. Ehricke, Program Director, Vega Program, Convair-Astronautics

A detailed and systematic treatment by one of the world's great authorities covering the concepts of spaceflight, its environment, astronomy from the viewpoint of the astronautical engineer, and principles and methods of celestial mechanics. Comprehensive data tables, graphs, many derivations and equations of motion are helpfully included. Principles of Guided Missile Design

650 pages, \$14.50

BEAM AND WAVE ELECTRONICS IN MICROWAVE TUBES

By Rudolf G. E. Hutter, Chief Engineer of Special Tube Operations, Sylvania Electronic Systems.

This thorough book presents the operating principles of microwave tubes, from klystrons and magnetrons to the most recent traveling-wave tubes, bringing together significant and original contributions of workers in all parts of the world. Van Nostrand Series in Electronics and Communications

375 pages, \$9.75

NUCLEAR FUSION

By William R. Allis, Professor of Physics, M.I.T.

Here is a compact, usuable one-volume guide to the present status of nuclear fusion as reported at the 1958 conference in Geneva. The author has removed duplications, added clarifications and helpfully indexed the subject matter. The Second Geneva Series on the Peaceful Uses on Atomic Energy

450 pages, \$12.50

ELECTRICAL NOISE: FUNDAMENTALS AND PHYSICAL MECHANISM

By D. A. Bell, Reader in Electromagnetism, University of Birmingham

Both the historical and controversial theories are discussed in this unified reference and source book. The author's primary concern is with the mechanisms of noise in physical devices which are of interest to the physical and electrical engineer.

320 pages, prob. \$9.75

BASIC PRINCIPLES OF NUCLEAR SCIENCE AND REACTORS

By Alan M. Jacobs, Research Associate, Nuclear Engineering Department, The Pennsylvania State University, Donald E. Kline, Staff Research Physicist, HRB-Singer, Inc. and Forrest J. Remick, Director, Nuclear Reactor Facility, The Pennsylvania State University

Here is an introduction, devoid of mathematical rigor, to the design and usage of nuclear reactors and radioisotopes with qualitative derivations of the important aspects.

250 pages, prob. \$7.50

D. VAN NOSTRAND COMPANY, INC.

PRINCETON, N.J.

and explanation can form an adequate basis for any who wish to study programming systematically.

Programming for both scientific and commercial problems is described. Considerable attention is given to questions of efficient storage and sequencing and the importance of program efficiency is constantly stressed. In this connection the practical balance between storage economy and time economy is discussed on a number of occasions, so that the various considerations are made quite clear.

The subject of pseudocodes, symbolic codes, assemblers, and automatic programs are dealt with rather summarily in one chapter. Moreover, very little space has been allotted to what is probably the central problem of most beginners—to recognize the most common errors and track them down in the program. It is difficult to complain on either count since the stated purpose of the book was rather to expound the general principles on which all programming is based.

Theoretical Elasticity. By Carl E. Pearson, 218 pp. Harvard U. Press, Cambridge, Mass., 1959. \$6.00. Reviewed by E. H. Dill, University of Washington.

THE author presents the fundamental concepts of the mechanics of continuous elastic media in a form which reads like a novel. This book can be highly recommended to specialists in related fields who wish to comprehend the foundations of elasticity theory in a minimum of time. It is intended, however, primarily for first-year graduate students.

An introductory chapter contains all the background material on vector and tensor analysis necessary to read the remaining chapters. The fundamental concepts are then presented in a logical manner and the implications of the theory discussed. Known general solutions are developed. Variational methods for obtaining approximate solutions are indicated briefly. Chapters on thermoelasticity, time-dependent problems, and nonlinear elasticity complete the book. It should be emphasized that only general results are presented; the book is void of any application to special problems usually found in texts on elasticity. For example it does not contain a discussion of plane stress and plane strain, or of the torsion of rods, etc. It does contain material which the reviewer feels should be studied by every graduate student in physics and engineering, regardless of field of specialization.

Elementary Matrix Algebra. By Franz E. Hohn. 305 pp. The Macmillan Co., New York, 1958. \$10.00. Reviewed by Paul Slepian, Hughes Research Laboratories

FORTUNATELY, the graduate engineer or physicist today is exposed to substantially more mathematics than his counterpart of fifteen or twenty years ago. In those medieval times the terminal mathematics course for such a graduate was an elementary course in ordinary differential equations. Now, in many institu-

tions this course has been eliminated and replaced by a two- or three-semester sequence of advanced calculus, incorporating ordinary differential equations into the sequence.

In addition, many engineering and physics undergraduates are now exposed to the fundamental ideas and concepts of modern algebra. The popularity of such courses has created a need for an elementary text on modern algebra, written by a mathematician, which states the basic ideas, axioms, and theorems precisely, without rendering them obscure to the mathematically unsophisticated clientele. The book under review meets this need admirably.

The author wisely limits his discussion to matrices, determinants, vector spaces, linear equations, and quadratic forms; these topics comprise the basic core of modern algebra to which a graduate engineer or physicist should be exposed, and the inclusion of material of greater depth and complexity would have defeated the purpose for which the book is intended. Furthermore, the author writes with remarkable clarity, but precision is seldom sacrificed at the expense of lucidity.

Occasionally the author slips. For example, although he is careful to distinguish between a matrix, which he calls an array of numbers, and the determinant of a matrix, which is a number, he later refers to the complement of a minor. This is nonsense, since a minor is the determinant of a submatrix; thus, a minor is a number, and it is meaningless to discuss the complement of a number. Such errors, however, are quite rare, and even if discovered, they are not likely to offend the average user of this excellent book.

Mécanique quantique, Vol. 1. By Albert Messiah. 430 pp. Dunod, Paris, France, 1959. 3900 fr. Reviewed by Nicholas Chako, Queens College.

THE author's plan for writing a comprehensive and modern book on quantum mechanics has been partly realized in the appearance of the first of a series of two volumes on this subject. As one would expect, the first volume, reviewed here, deals mainly with the elementary parts of the field. However, it is not what one would commonly call an elementary text, even though it covers most of the topics which are usually included in elementary courses in quantum mechanics. One of the reasons is the early introduction in the text of modern mathematical methods (linear operators in Hilbert space) by which the formalism of quantum mechanics is developed. This, as well as other features which are incorporated, makes it an excellent text for a graduate course in quantum mechanics.

The author begins with a critical and clear exposition of the shortcomings of the classical theories of dynamics and electromagnetic theory, including the old quantum theory, in explaining microscopic phenomena, and gradually leading his readers to de Broglie's ideas of material waves and to Schrödinger's time-dependent equation by means of linear operators. By introducing this powerful mathematical method, the author is able