ment is headed by biochemist Wendell M. Stanley, Nobel Laureate and director of the Laboratory. Starting in September, lecture courses will be offered to graduate and advanced undergraduate students, to be followed later by a comprehensive laboratory course. Additional instruction will be offered, mostly at the graduate level, in the form of special study courses, seminars, and research projects. The program will lead to the MS degree with a major in virology, or to the PhD. The Department is now accepting applications from qualified students (including upper division and graduate students in other departments who wish to receive instruction in virology). A limited number of teaching and research assistantships are available.

## Facilities

A Center for Nuclear Technology will be established this fall at Cornell University in Ithaca, N. Y., at a cost of more than \$1.5 million. A National Science Foundation grant of \$475 000 assured construction of the Center, which will include a nuclear reactor unit that can be used both for research and for training. For research purposes it will have a zero-power core obtained under the NSF grant, while the training program will employ a TRIGA (Training Research Isotope General Atomics) core, towards which the Atomic Energy Commission has granted \$150,000. The training core will also be used for radioactive isotopes studies. The Center will be under the direction of Trevor R. Cuykendall and David D. Clark of Cornell's Department of Engineering Physics, and is expected to be complete by next summer.

Atlantic Research Corporation of Alexandria, Va., formally dedicated its new headquarters offices and laboratories on July 18. The ten-year-old research and development firm's major activity is solid propellant rocketry, but it has also carried out a variety of chemical, electronic, and engineering projects for governmental and industrial sponsors.

A contract for the construction of a Metals Development Building at the Ames (Iowa) Laboratory of the US Atomic Energy Commission was signed on June 22. The cost of the entire project, including equipment and utilities, will be \$1.9 million. Construction of the building is expected to be completed sometime in 1960.

The Leach Corporation has opened a new solidstate research laboratory at its Relay Division in Los Angeles to augment the firm's development and test work on semiconductor devices.

On July 27, Raytheon Company dedicated its new Spencer Laboratory in Burlington, Mass. To be used for the research and development of all types of microwave tubes including, at present, magnetrons, amplitrons, traveling-wave tubes, backward-wave oscillators, and klystrons, the new facility is named for Raytheon's senior vice president, Percy L. Spencer, a pioneer in microwave tube development. During the dedication

ceremonies, the firm revealed that the Spencer Laboratory, in addition to containing space for laboratories, offices, and a technical library, will house a 100-footlong modulator for testing high-power microwave tubes, which will be constructed as part of a special \$4 million program to be initiated by Raytheon in the near future. The modulator will be placed in a special wing of the new laboratory.

Georg Joos, professor of experimental physics at the Technische Hochschule in Munich, Germany, died on May 20. Born in 1894, Prof. Joos was educated at the Institute of Technology in Stuttgart and at the University of Tübingen. He was professor of theoretical physics at the University of Jena from 1924 to 1935, and in the latter year he was named professor of experimental physics at the University of Göttingen. During the period 1941–45 he was the scientific director of the Zeiss Works. After the war he left Zeiss to accept the experimental physics professorship at Munich, which he held until his death. Prof. Joos was a member of the Bavarian Akademie der Wissenschaften and the Akademie der Wissenschaften of Göttingen.

Karl W. Meissner, professor of physics at Purdue University, died suddenly on April 13 as the result of a coronary thrombosis. He was 67 years of age and at the time of his death was at sea, enroute to Europe. He was to have presented a paper on his recent work with the atomic beam source at the International Symposium on Interferometry held in June at Teddington, Middlesex, England, and was scheduled to spend the summer term at the University of Kiel, Germany, as a visiting lecturer in spectroscopy. He was born in Reutlingen, Germany, and received his doctoral degree from the University of Tübingen in 1915, where he studied under Paschen, Roentgen, and Sommerfeld. In 1925 he was called to the University of Frankfurt-am-Main, where in 1930 he became the director of the Physics Department. His refusal to compromise the basic principles of democracy and human freedom led to his dismissal in 1937 by the Nazi regime, and in the following year he came to the United States as assistant professor of physics at the Worcester Polytechnic Institute in Massachusetts. He joined the physics faculty of Purdue University in 1941 and remained there in charge of the spectroscopy section.

Prof. Meissner was the first to prove experimentally the existence of oxygen and sulfur in the sun. In 1935, independently of Minkowski and Bruck, he developed the atomic beam method for the study of hyperfine structure. From 1942 on he was interested in the development of an atomic beam light source for the primary standard of length. In his experiments with this source at Purdue he succeeded in reducing the half width of the calcium line  $\lambda 4226$  A to less than one third that of any other line proposed as a primary standard. Just one month prior to his death he suc-