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THE topic I shall discuss is mathematics and rhe-
ology and I shall, of course, concentrate on those

aspects of mathematical rheology in which I have been
interested. Many of you will no doubt recall that Sir
Geoffrey Taylor chose a similar topic as the subject for
his Presidential Address to the International Conference
on Rheology held at Oxford in 1953. In it he advanced
what seemed to me a rather pessimistic appraisal of the
role of mathematics in rheology. I shall try to be more
optimistic. Unfortunately, I was not able to attend the
Oxford conference myself and merely read Sir Geof-
frey's talk in the proceedings of the conference. I con-
jecture from its pessimistic note that Sir Geoffrey must
have been talking before dinner. I like to think that if
he had been talking after dinner, he too would have
been more optimistic. In his preprandial pessimism he
took the view that the mathematician must at best have
the role of a handmaiden to the experimental rheologist,
solving—or more often failing to solve—particular little
problems that are posed. I would much rather regard his
role as one of equal responsibility with the experimen-
tal rheologist for the advance of the subject—at times
running ahead of the experimenter and determining
the pattern of progress, at other times lagging behind.

So I shall, with your indulgence, spend a little time
talking about one way in which a mathematical frame-
work can be set up for describing the mechanics of
classes of materials in which rheologists are interested.
Specifically, I shall talk a little about the point of view
underlying some recent developments in finite elasticity
theory and shall then indicate how this same point of
view can be extended and applied to rheologically more
complicated systems.

I shall take as my starting point the position in finite
elasticity theory at the beginning of the 20th century.
Already in the course of the development of classical
elasticity theory throughout the 19th century many re-
sults were obtained which did not involve the charac-
teristic assumption of classical elasticity theory that the
deformations are infinitesimally small. Consequently, by
the beginning of the 20th century a framework already
existed for a finite elasticity theory, in which no re-
strictions are imposed on the magnitudes of the elastic
deformations. However, there were some missing links.
It was realized that the physical properties of an elastic
material can be characterized by a strain-energy func-
tion and that this cannot depend on the nine displace-
ment gradients in a completely arbitrary fashion, but is
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restricted to a dependence through six strain compo-
nents. These are, of course, not the classical strain com-
ponents, but were perfectly well denned for the purpose
at hand.

Furthermore, it was realized that if the material has
some symmetry, the dependence of the strain energy on
these strain components cannot be arbitrary. In particu-
lar, if the material is isotropic, the strain energy has to
depend on only three functions of the strain—the so-
called strain invariants. I might remark that Gerald
Smith in a dissertation at Brown University worked out,
a few years ago, the precise way in which the strain
energy must depend on the strain components for each
of the thirty-two classes of crystal symmetry. You will
recall that Voigt, at the beginning of the century, dis-
cussed the analogous problem for infinitesimal deforma-
tions and found that for the thirty-two crystal classes,
the dependence of the strain energy on the strain com-
ponents must take one of nine different forms. Gerald
Smith found that in the case of finite deformations,
there are eleven possible forms for the thirty-two crystal
classes.

Anyway, as I have already remarked, by the turn of
the century it was fully realized that for an isotropic
material the strain energy must involve the strain through
the three strain invariants. It was also realized that if
the form of this dependence is known for a particular
material, stress-strain relations (or, as we should now
say, constitutive equations\ equations of equilibrium,
etc., and indeed the whole formalism for a complete
mechanics of the material can be derived. The open prob-
lem was the following—what form should be adopted
for the strain-energy function? It is this matter which
seems to have held up the development of finite elas-
ticity theory during most of the first half of the 20th
century.

One might have thought that there would have been
a serious attempt to find the correct form for the strain-
energy function from molecular considerations. But in-
terest in elasticity theory in the early part of this century
was primarily in its application to metals and hard crys-
tals. Classical elasticity theory provided a satisfactory
description of the behavior of such materials in the
elastic range and, moreover, a satisfactory quantitative
molecular basis even for classical elasticity theory did
not exist. The course that was adopted by many workers
was to postulate some form or other for the strain-
energy function on grounds of simplicity and to proceed
on that basis. Unfortunately, the views of different work-
ers on what constituted the simplest possible form for
the strain energy did not coincide. I reflect here on the
remark made by Mephistopheles in Goethe's Faust, "For
at the point where concepts fail, a timely word will be
your bail." The word in this case is simplest. I hope, by
the way, you will forgive the free and irreverent trans-
lation and my quoting the Devil for my own purposes.

Of course, even if there were a unique simplest form
for the strain-energy function, which would result in a
relatively tractable mathematical theory, this would
not completely solve our problem—the particular mate-

rial with which we are concerned might not be fortunate
enough to have heard about this form. The "simplicity"
argument I have cited reminds me of the story about
the drunk who was painstakingly searching Times Square
one night. When asked by a policeman what he was do-
ing, he said that he was looking for his watch. The
policeman asked him where he had lost it. "In Brooklyn"
said the drunk. "Well, why are you looking for it on
Times Square?" "It's lighter here than in Brooklyn,"
answered the drunk.

I can make these comments with the better grace in
that my own entry into the field of finite elasticity was
largely through this very road of alleged simplicity. It
was only very recently that I appreciated that I might
have stood on firmer ground. But more of that in due
course.

A break with the notion of simplicity came with the
publication by Murnaghan of his well-known paper in
1937. He considered the strain-energy function to be a
function of the strain invariants and considered suc-
cessive approximation to the strain-energy function when
the deformations are small. He considered the classical
form for the strain-energy function to be the first ap-
proximation—involving as it does two physical con-
stants for the material, say Young's modulus and Pois-
son's ratio. He showed that the second approximation
would involve five physical constants. Strictly, classical
elasticity theory makes the assumption that both the
extensions and rotations undergone by the material are
small, while Murnaghan considered only the extensions
to be small and allowed that the rotations might take any
value. Mooney in 1940 advanced his well-known strain-
energy function which is, in fact, the analog for incom-
pressible materials of Murnaghan's strain energy for
compressible materials.

My own interest in finite elasticity theory arose in a
rather sticky fashion. In 1944, having spent the previous
seven years working on problems related to electrical
communications—television, telephony, and radar—I
joined the British Rubber Producers' Research Associa-
tion. I was asked to look into the adhesion mechanism
involved in pressure-sensitive adhesive tapes, which em-
ploy rubberlike adhesives, such as Scotch Tape and Band-
Aid. I rapidly came to the conclusion that the origin of
their adhesive character lies in the fact that when such
an adhesive tape is stripped off its adherend, more or less
long filaments of the adhesive are drawn out before they
detach themselves from the adherend and that it is the
relatively large amount of work which has to be done
in stretching these filaments that provides a measure of
the adhesive quality of these tapes. It then occurred to
me that it would be a good idea to calculate how much
work would have to be done in stretching such filaments.

As soon as I tried to do this it became apparent that
the basic theory on which any such calculation must
depend did not exist.

However, Treloar had a year or two earlier given an
expression for the strain-energy function for biaxial
deformation of vulcanized rubber, which he had derived
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on the basis of the kinetic theory of rubberlike elasticity.
When this is expressed in a more general context to
render it applicable to inhomogeneous deformations, we
obtain a mathematically simpler expression for the
strain-energy function than any of the simple expressions
used by workers earlier in the century. I called this the
neo-Hookean form for the strain-energy function. It
is a particular case of the Mooney form for the strain-
energy function and provides a first approximation to
the Mooney form if the extensions undergone by the
material are sufficiently small, while the rotations may
remain large. Using this form for the strain-energy func-
tion I was able to solve some simple problems concern-
ing the forces necessary to produce simple extension,
shear, or torsion. Now, even these simple calculations
led to a result which seemed interesting. The forces
which would have to be exerted on a block of material
to produce in it a simple shear were not solely shearing
forces, as would be predicted by classical elasticity the-
ory, but also thrusts normal to the plane of shear. In
the case of torsion, the forces which had to be exerted
were not only a torque, but also a thrust distributed
over the end of the rod in a parabolic fashion. Qualita-
tively this is the effect discovered experimentally by
Poynting in about 1910 in rods of both metal and vul-
canized rubber, but apparently largely forgotten in the
intervening years.

Now, one of the features which makes the calculations
particularly easy in the case of the neo-Hookean mate-
rial is the simple form of the strain-energy function.
Another is the incompressibility of the material. It oc-
curred to me that taking advantage of the simplifications
introduced by the incompressibility of the material the
same problems could be solved without making any par-
ticular assumption about the form of the strain-energy
function.

In this way it was possible to calculate the forces
necessary to produce various simple types of deforma-
tion in an incompressible isotropic elastic material, such
as vulcanized rubber, which undergoes large elastic de-
formations. In the expressions which are so obtained for
the forces, the functional dependence of the strain en-
ergy on the strain invariants enters as an unknown, but
may be found by comparing the analytical results with
those of experiments, in which the forces necessary to
produce an elastic deformation in a body of the material
are measured. Such experiments were carried out for
vulcanized rubbers by a number of collaborators—prin-
cipally, Drs. Saunders, Thomas, Gent, and Mullins—
and not only were they able to obtain the manner in
which the strain energy depends on the strain invariants
for vulcanized rubber compounds, but they were able
to predict fairly accurately the results of various other
types of experiment performed on the same material. I
don't want to annoy you with the details of all of the
experiments which were carried out. I should like to
mention though that, in doing experiments on various
vulcanized rubbers with various degrees of vulcanization,
it was quite clear that the strain energy depended on the
strain invariants essentially in the same way for all of

them, the only differences being quantitative. Quite
apart from its intrinsic interest, this is important for two
reasons. First of all it opens up the whole question of
the way in which the measured dependence of the strain
energy on the strain invariants may be explained in terms
of structure and indeed even suggests what are the
particular structural elements involved. More generally
it underlines the fact that even though we may construct
a phenomenological theory of considerable generality—
much too general one might think at first sight, to give
any very specific answers—when we in fact apply it to
a particular class of materials certain simplifications
emerge.

The notions that have made possible the progress in
finite elasticity theory that I have just described, also
suggest ways of developing the mechanics of much more
complicated materials. I remind you that the mathe-
matical basis for finite elasticity theory rests on the
assumption of the existence of a strain energy as a func-
tion of the displacement gradients. Then one makes use
of the fact that a rotation of the whole physical system
leaves this energy unaltered to show that it depends on
the displacement gradients through the strain compo-
nents. Finally, one introduces the further limitations
which are imposed on the form that can be taken by the
strain-energy function by the fact that the material is
isotropic.

In the same way we can develop relations which de-
scribe the mechanical behavior of dissipative materials.
All we have to know are the variables that enter into
the determination of the stress components. Thus, if we
are considering a fluid, the stress might depend on the
velocity gradients. In that case we could limit the form
of the relation between stress and velocity gradients by
the consideration that it is independent of the angular
velocity of the physical system and secondly that the
fluid is isotropic. Alternatively, we might assume that
the stress depends on the velocity gradients and accel-
eration gradients, in which case we can limit the expres-
sion for the stress by the consideration that it is inde-
pendent of the angular velocity and angular acceleration
of the physical system and is further limited by the
isotropy of the material.

My own excursions into the mechanics of viscoelastic
fluids had their origin in 1946, while I was visiting the
United States for a year, in a conversation with Dr.
Oliver Burke, who was at that time director of extra-
mural research programs for the Office of the Rubber
Reserve. During this conversation, I mentioned some
experiments which had been carried out in England
during the War by various people working in Professor
Lander's laboratory at Imperial College on hydrocarbon
gels of the type used as flame thrower fuels.

First of all Garner and Nissan made the observation
that when a rod is rotated in a hydrocarbon gel, the
liquid rises up the stirrer, while in an ordinary New-
tonian fluid, there is a slight depression near the stirrer.
Later, other very beautiful experimental demonstrations
of essentially the same phenomenon were devised by
Weissenberg and the phenomenon has been commonly
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called the Weissenberg effect. Since paternity is a difficult
thing to establish, I prefer to call it the normal stress
effect.

When I described these effects to Dr. Burke, he sug-
gested that during what remained of my stay in the
United States I set up a program to examine these at
the Mellon Institute under the auspices of the Office of
the Rubber Reserve. I agreed to this and an apparatus
was constructed at the Mellon Institute based essen-
tially on one of Weissenberg's demonstrations. Concur-
rently, I started to worry about the origin of these
effects and tried to work out a phenomenological theory
for them. I want to spare you at this late stage a re-
capitulation of the way in which these ideas have de-
veloped. I think—although the detailed experimental
verification of this is still lacking—that there are now
two satisfactory phenomenological theories for describ-
ing the mechanical behavior of viscoelastic fluids and
incidentally the normal stress effects. These two theories
differ considerably in mathematical form, but can be
shown to be substantially equivalent. In one of them,
developed with Dr. Ericksen, it is assumed that the
stress depends on the space gradients of velocity, accel-
eration, and of higher time derivatives of the velocity.
Then, introducing the fact that the expression for the
stress must be unaltered by superposition on the flow
of a rigid body motion, and that the fluid is isotropic
and incompressible, we can obtain the constitutive equa-
tions for an incompressible viscoelastic fluid. In the
second theory, developed with Dr. A. E. Green, we take
as our starting point the assumption that stress in an
element of the fluid depends on the velocity gradients
in that element at all instants up to the time of meas-
urement—in other words that the fluid has memory of
the velocity gradients in it at previous instants of time.
Again, introducing the fact that the expression for the
stress is unaltered by a rigid body motion of the fluid
and introducing the restrictions imposed by isotropy one
can obtain appropriate constitutive equations.

The constitutive equations obtained in either of these
ways can be used as a basis for the analysis of simple
normal stress effect type experiments and for predicting
other interesting phenomena. In fact I think that the
point has been reached where major progress will be
experimental and much experimental work remains to
be done.

It is perhaps worth mentioning, in conclusion, that
the point of view adopted in developing the theories I
have mentioned is a flexible one which can be applied to
types of material other than those I have so far men-
tioned and indeed to branches of physics other than rhe-
ology, which involve nonlinear phenomena in continua.
Indeed, a start has been made in this direction by Dr.
R. Toupin, who has applied methods of this kind to
discuss electrostrictive effects and in a recent disserta-
tion by Mr. A. C. Pipkin, who has considered in addition
electrical conduction in deformed materials, heat con-
duction, and indeed has developed to a considerable
extent the general mathematical basis for handling such
nonlinear theories in physics.
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