Electronics Engineering Specialist

The Systems Support element, Nortronics, a division of Northrop Corporation, has an opening for an Electronics Engineering Specialist, in Anaheim, California.

This specialist will be responsible for the electronic portion of preliminary design of optical-electronic, electrooptical and electromechanical devices for military fire control applications, and for performing or directing detailed design. Work will involve application of Kerr cells and other electrooptical devices; TV-type systems employing mechanical as well as electronic scanning techniques; solid state photo-detection and light-amplifying units; and their associated amplifiers, power supplies, etc.

Where current equipment and techniques are inadequate, a theoretical analysis of the feasibility and practicality of advancing state of the art to achieve the desired results will be required, along with formulation of detailed research plans.

PhD in Physics or Electronics with 7 to 10 years of applicable experience desired. MS or BS degrees with greater experience will receive full consideration.

In addition to the outstanding opportunity, this position offers residence near Los Angeles, in suburban Orange County; provides innumerable benefits in a fine residential area with nearby schools, modern shopping centers, and a variety of recreational facilities for family enjoyment.

Qualified applicants should check this opening now by contacting Nortronics Personnel Office,

NORTRONICS

500 E. Orangethorpe, Anaheim, California

matical theory. The bibliography would be helpful in such a seminar and is a good bibliography for one beginning a study of linear programming.

Physique Electronique des Gaz et des Solides. By Michel Bayet. 246 pp. Masson et Cie, Paris, France, 1958. 4.900 fr. Reviewed by R. Bruce Lindsay, Brown University.

This volume covers essentially the content of a course offered by the author in the science faculty at the University of Toulouse, where he is Maître de Conférences d'Electronique. It represents the attempt to introduce a certain unity into theoretical electron physics by deducing the electrical properties of both gases and solids from the behavior of a Lorentz gas of electrons immersed in an aggregate of heavy particles (molecules or ions). This unifying thread is the chief merit of the book, since the topics covered are by and large the usual ones encountered in the standard texts on physical electronics.

The book begins with a brief review of physical statistics, both classical and quantum, and with a consideration of collision cross sections in the interaction of the particles of an aggregate. This is followed by the elements of the kinetic theory of gases, including a derivation of the Boltzmann equation, the classical distribution function and the standard transport properties. The Lorentz electron gas is then introduced and its properties discussed for the nondegenerate case. This leads to a consideration of the propagation of electromagnetic radiation through a Lorentz gas and the study of plasma oscillations. Two chapters are devoted to standard material on electric discharges through gases. The last two chapters are devoted to the electron theory of metals, first in terms of the old Sommerfeld theory and then using the Bloch-Brillouin quantum theory of energy bands.

The book is clearly written and there is a definite attempt to connect the theoretical developments with experimental results. Unfortunately its use as a reference book is considerably diminished by an inadequate index.

Dynamical Analogies (2nd Revised Ed.). By Harry F. Olson. 278 pp. D. Van Nostrand Co., Inc., Princeton, N. J., 1958. \$6.75. Reviewed by Peter L. Balise, University of Washington.

This second edition of the well-known work originally published in 1942 is welcome, both for the additional material now included and because the subject is of increasing importance. Modern computational aids promote more exact analyses, which results in greater recognition of the fundamentally analogous mathematical behavior of systems which appear physically to be quite different.

This edition consists of the entire first edition essentially unchanged, which is reasonable since fundamental theory has not changed, plus additional material. The older material is a comprehensive presentation of the

THE PHYSICS OF FLUIDS

A JOURNAL PUBLISHED BY THE AMERICAN INSTITUTE OF PHYSICS

DEVOTED TO ORIGINAL RESEARCH CONTRIBUTIONS COVERING THE FIELDS OF

PLASMA PHYSICS · STATISTICAL MECHANICS · FLUID DYNAMICS

and Certain Basic Aspects of Physics of Fluids Related to Geophysics and Astrophysics

PAPERS NOW IN PRINT

(Abbreviated titles)

Plasma Oscillations in a Magnetic Field—J. Dawson and C. Oberman Electrostatic Probes in Low Density Plasma—I. B. Bernstein and I. N. Rabinowitz

Inertial-Electrostatic Confinement of a Plasma—W. C. Elmore, J. L. Tuck and K. M. Watson

Ionic Theory of Plasma and Magnetohydrodynamics—H. S. Green Collision Frequency of Electrons in the Atmosphere—Marcel Nicolet Approach of Electrons to Equilibrium—S. L. Kahalas and H. C. Kashian Solutions of Navier-Stokes and Hydromagnetic Equations—W. C. Meecham

Free Surface Oscillations in a Rotating Liquid—J. W. Miles Onset of Convection in Liquids—R. K. Soberman

Hydrodynamic Instability Inhibition by an Electric Current—C. S. Yih Solutions for Combined Forced and Free Convection—E. M. Sparrow, R. Eichhorn and J. L. Gregg

Similarity Spectra in Isotropic Turbulence—W. H. Reid and D. L. Harris Statistical Mechanics of Dissociating Diatomic Gases—Leon Heller Optical Refractivity of High Temperature Gases—R. A. Alpher and

Dissociation Rate of Oxygen in a Shock Tube—D. L. Matthews
Triple Shock Wave Intersections—Joseph Sternberg
Shock Tube Performance at Low Initial Pressure—R. E. Duff
Seismic Law for Underground Explosions—A. L. Latter, E. A. Martinelli and E. Teller

Supersonic Flow of a Reacting Gas Mixture—P. P. Wegener Liquid Behavior of Exploding Wires—W. G. Chace Blast Wave From a Spherical Charge—H. L. Brode

BOARD OF EDITORS

Francois N. Frenkiel, Editor, Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

Associate Editors

Term ending December 31, 1959

Term ending December 31, 1960

Term ending December 31, 1961

Walker Bleakney J. M. Burgers Joseph Kaplan John G. Kirkwood Galen B. Schubauer Peter Wegener Jesse W. Beams
S. Chandrasekhar
Hugh L. Dryden
Raymond J. Emrich
Arnold M. Kuethe
Edward Teller

Carl Eckart Joseph E. Mayer Gordon N. Patterson Lyman Spitzer, Jr. George E. Uhlenbeck James A. Van Allen

Issued Bi-monthly

Annual Subscription Rates: Non-Members—\$10 dom., \$11 for. Members of A.I.P. societies—\$8 dom., \$9 for. A.P.S. in lieu—\$4 dom., \$5 for.

Orders and Inquiries should be sent to

AMERICAN INSTITUTE OF PHYSICS, 335 E. 45 Street, N. Y. 17, N. Y.

SEEKING A PUBLISHER?

Recognition Soars in Your Field When Your Book is Published!

It is no secret that publication is regarded as the foundation stone of a scientist's career. To gain recognition, prestige and advancement, the scholar and scientist has no choice but to seek publication.

Twenty-one years of experience with texts, manuals, biographies, scholarly works, essays and fiction enable us to publish books that are expertly edited and indexed, handsomely printed, bound, jacketed and vigorously promoted.

Your inquiries and manuscripts are invited (all subjects welcomed). An editorial report will be furnished promptly without obligation.

FREE! The behind-the-scenes story of subsidy publishing revealed in two brochures. Learn how you can get 40% royalties, local-national publicity, increased professional-social stature and acceptance as an author.

Write to Philip Todd, Editor, for free booklets.

EXPOSITION PRESS, 386 FOURTH AVE., NEW YORK 16

SENIOR OPTICAL DESIGN ENGINEER

Bell & Howell Company, world's largest manufacturer of motion picture equipment, is seeking a senior optical designer whose creativity and ability to do independent research suit him for assumption of major design responsibilities. Fundamental requirements are:

Broad knowledge of physics and mathematics. Ph.D. in either field would be helpful but not required. M.S. degree in either field imperative. At least 10 years experience in the development and design of optical systems and components. Required to implement designs from initial concept to final design. Responsible for originating new optical systems and adapting existing complex systems.

The Bell & Howell Company is engaged in advanced optical design and basic optical research. Products range from 8 mm motion picture cameras and projectors to equipment requiring the most complex and advanced optical systems. Extensive facilities are available in an atmosphere conducive to independence and creativity.

Contact: Charles W. Gray
Manager, Personnel Planning
BELL & HOWELL COMPANY
7100 McCormick Road
Chicago 45, Illinois
AMbassador 2-1600

equations describing the behavior of analogous electrical, rectilinear mechanical, rotational mechanical, and acoustical systems by impedance analogy. The equilibrium equations for the single degree of freedom systems are obtained by both force balance and power balance, and Lagrange's equations are used for systems with several degrees of freedom. Transient response is obtained for the step input and the general input by indicial admittance, but not by unit impulse response. There are good chapters on electrical-mechanical-acoustical transducers.

The new material is about 75 pages at the end of the book dealing with noise and distortion, magnetic analogy, feedback, and the mobility analogy. The chapters on noise and distortion and the magnetic analogy are brief but outline the subjects well. Some interesting applications of feedback are given, but the treatment is so abbreviated as to give an inadequate appreciation, particularly of the stability problem. The "mobility analogy", which is a method of obtaining an electrical analogy of a mechanical system by considering velocity as analogous to voltage and force to current, is thoroughly discussed.

There is little attention given to synthesizing analogous systems by logical procedures, but instead systems are presented by types; i.e., corrective networks and frequency filters, in which form the data is likely to be most directly useful. Because of this, and because the emphasis is on stating equations without detailed introductory derivations, the book is primarily an excellent reference rather than an explanatory text.

The Green Flash and Other Low Sun Phenomena. By D. J. K. O'Connell, S.J. 192 pp. (Vatican Observatory, 1958) Interscience Publishers, Inc., New York, 1958. \$6.00. Reviewed by C. C. Kiess, National Bureau of Standards.

Is the green flash a genuine meteorological phenomenon, or is it only a subjective experience? This question has been asked by many who have tried repeatedly to observe it, but without success. Among them may be counted both the reviewer of this book, who caught his first view of it only recently after many unrewarding attempts, and also its author, who confesses that after many unsuccessful trials, in various situations, he "saw it for the first time, and very clearly, at sunset over the Mediterranean from my office window at Castel Gandolfo". His aim in writing the book is to establish beyond all doubt the objectivity of the green flash from recent photographic evidence, free from psycho-physiological bias.

The textual matter of the book is brief and is intended to serve primarily as an introduction to the exhibit of photographs that it presents. The first section is historical and traces the story of the green flash from first mention of it in ancient literature to the more precise descriptions of it in recent observations. The second and third sections discuss the theories of the phenomenon, ranging from the purely physiological to those rep-