Creative Opportunities at CLEVITE RESEARCH

20 years of leadership in Solid State Research — Piezoelectricity — Ferroelectricity — Ferroelectricity — Ferromagnetism — a tradition of success begun at Brush Development and carried forward by the Electronic Research Division, Clevite Corporation. Our long range planning had developed opportunities for:

EXPERIMENTAL PHYSICIST

Recent academic experience at the doctoral level in a branch of modern physics essential—solid state or magnetic resonance preferred.

APPLIED MATHEMATICIAN

With a doctorate or master's degree to carry out mathematical analysis of problems in solid state physics and electroacoustics and to consult with physicists and engineers.

ELECTRONIC ENGINEER

Apply solid state phenomena of selected materials to the conception of electromechanical devices.

Inquiries should be addressed to Mr. Eldred A. Gentry

CLEVITE RESEARCH CENTER

540 EAST 105th STREET CLEVELAND 8, OHIO is admirable for its clarity, although a more complete bibliography would be very useful, and Oxford Press has done its customary fine job in printing the book. All in all, it remains a masterly treatment of an engrossing subject.

Proceedings of the Seventh Japan National Congress for Applied Mechanics (U. of Tokyo, Sept. 1957). Sponsored by Science Council of Japan. 432 pp. Association for Science Documents Information, Tokyo, Japan, 1958. Paperbound. Reviewed by E. H. Dill, University of Washington.

The number of papers presented (34 in elasticity, plasticity, and soil mechanics; 27 on hydrodynamics, aerodynamics, hydraulics, and lubrication; 3 on heat transfers; 26 on vibration, computation, and automatic controls) make it prohibitive even to list the titles. Within each category the papers vary widely in subject matter and level of mathematical presentation; therefore, some papers will be of interest in applied physics and applied mathematics although others are of interest only to the practicing engineer. There is too often a lack of reference to recent publications and little effort to correlate with other existing work.

The reproduction is apparently a photo-offset of typewritten and hand-lettered copies just as they were submitted; in some cases the printing is almost illegible and the photographs are poorly reproduced, although most of the equations and figures are clear and distinct even when in quite fine print. Almost all of the papers are in English with a few in German. The only usefulness which seems to be served by this volume, as was also performed by its six predecessors, is to present to Western readers in relatively fast and cheap form a complete picture of the latest research by Japanese workers in the field of applied mechanics. As such it will only appeal to specialists in the fields covered.

Advances in Catalysis and Related Subjects. Vol. 10. Edited by D. D. Eley, W. G. Frankenburg, V. I. Komarewsky. 326 pp. Academic Press Inc., New York, 1958. \$11.00. Reviewed by Henry Wise, Stanford Research Institute.

A decade has gone by since the appearance of the first volume in the series Advances in Catalysis and Related Subjects. The objective of this publication is the presentation of "new scientific theories and methods which promise to become valuable for a better understanding of catalytic phenomena". The contents of Volume 10 fit well within this framework. As for experimental methods, the seven contributed articles by different authors contain descriptions of such interesting techniques as magnetic susceptibility, field-emission microscopy, crystal-face inspection, and infrared spectra of surface-adsorbed molecules. As for new scientific theories, this volume reflects some of the