PHYSICISTS ELECTRICAL ENGINEERS

with PhD

Central Research Laboratory — Texas Instruments research center — offers challenging opportunities to PhD's in Physics and Electrical Engineering interested in problems in ferromagnetics. Here, at Central Research Laboratory, you can achieve scientific and professional expansion while working with outstanding professional colleagues. These exceptional openings present excellent opportunities to join one of the nation's fastest-growing companies where unusually generous personnel benefits include profit sharing (in 1958, 15% of base salary).

PHYSICISTS and ELECTRICAL ENGINEERS—with PhD, familiar with the problems associated with evaporated and electrodeposited films; some knowledge of ferromagnetism is required and ultra-high frequency electronics experience is desirable. These opportunities are available for men interested in device technology and capable of working with existing ferromagnetic research and computer technology groups.

PHYSICISTS — with PhD, interested in the fundamental problems in ferromagnetism, particularly those problems which can be studied in thin films. Knowledge of experimental techniques which apply to ferromagnetism is essential.

To find out more about one of these exceptional career opportunities, please write:

LEIGH WATSON, Dept. 3212

Central Research Laboratory

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 1079 . DALLAS, TEXAS

familiar structure of thermodynamics, working into the Gibbs distribution. The emphasis is on the microcanonical ensemble, rather than on grand canonical ensembles, so that on the average the book will appeal more to physicists than to chemists at this point.

The standard problems of gases are treated systematically, and the quantum distributions of Fermi and Bose are introduced early in the text, with a smooth transition to the modern problems of condensed systems, including superfluids.

Of more interest to chemists is the coverage of phase equilibrium, solutions, and chemical reactions, all of which fields are given careful treatments.

Fluctuation-dissipation theory is treated at some length, with applications to both thermodynamic and nonthermodynamic fluctuations.

One of the characteristics of Soviet texts in quantum mechanics is repeated here, in the concluding chapters, in the application of the concepts and consequences of group theory in discussing the symmetry of macroscopic bodies and the theory of second-order phase transitions. While this material is on a rather high level for the ordinary graduate course in statistics, it forms a most valuable addition to the text.

The book closes with a chapter on surface physics, taking up such problems as adsorption, liquid film, and creation of nuclei.

On its over-all merits (including the excellence of the translation) then, this reviewer is enthusiastic about the text, and recommends its widespread use.

Advances in Chemical Physics, Vol. 1. Edited by I. Prigogine. 414 pp. Interscience Publishers, Inc., New York, 1958. \$11.50. Reviewed by Henry Wise, Stanford Research Institute.

PUBLICATION policies of our journal and text book editors have given rise to a new mode of review of recent scientific accomplishments. In general, it appears under a heading entitled "Advances". It seems to accommodate those scholarly contributions too large in size for a journal article or too short for a monograph. In price, however, it approaches the textbook category. As pointed out by the editor of Advances in Chemical Physics, this publication will be devoted to "basic problems that concern the properties of individual molecules and atoms as well as the behavior of statistical ensembles of molecules and atoms". The wide range of subjects chosen for this volume becomes apparent from the table of contents: Statistical-Mechanical Theory of Transport Processes. X. The Heat of Transport in Binary Liquid Solutions (Bearman, Kirkwood, and Fixman); Theoretical and Experimental Aspects of Isotope Effects in Chemical Kinetics (Bigeleisen and Wolfsberg); Dielectric Properties of Dilute Polymer Solutions (de Brouckère and Mandel); Some Physical Aspects of Gaseous Chemical Kinetics (Careri); Transport Processes in Liquids (Collins and Raffel); The Relation Between Structure and Chemical Reactivity of Aromatic Hydrocarbons

MICROWAVE PHYSICS

. . . in which the microwave properties of plasmas and shock waves play a large part, is a central and growing activity at this Laboratory. Deeply involved in supporting research aspects of the anti-ICBM problem, our work in the radar "cross-section" field has opened new avenues of basic and applied research, both analytical and experimental.

We invite employment inquiries from Physicists, and others, with experience in microwaves and electromagnetic propagation.

The Laboratory's professional prospectus,
"A Community of Science,"
is available upon request. Please address
J. T. Rentschler and ask for booklet T-6.

CORNELL AERONAUTICAL LABORATORY, INC.

OF CORNELL UNIVERSITY

BUFFALO 21, NEW YORK

Now Available! The FIRST Book on the Subject . . .

EXPLODING WIRES

Edited by: WILLIAM G. CHACE, Geophysics Research Directorate, Air Force Cambridge Research Center.

and HOWARD K. MOORE, Lowell Technological Institute Research Foundation.

Based on Conference on the Exploding Wire Phenomenon, April, 1959. Conducted by Geophysics Research Directorate, Air Force Cambridge Research Center with the cooperation of Lowell Technological Institute Research Foundation.

This significant monograph on Exploding Wires is the first to be published in any language. The ever increasing interest in this important scientific phenomenon was initially indicated by the overwhelming response to the Conference on Exploding Wire Phenomenon. This book not only records this Conference, but fills a large gap in the literature on this subject. This work will prove extremely useful to all workers in the fields of high speed photography, shock wave, and thermonuclear research. It will also prove useful to students, technologists and scientists concerned with physics of fluid.

384 pages

cloth

illus

\$9.50

Order your copy from your local bookseller or

PLENUM PRESS, INC.

227 West 17th St., New York 11, N. Y.

PHYSICISTS

We need Ph.D. Physicists to initiate fundamental experimental research in the areas of: ferromagnetism, defect solid state, physics of ultra-high pressures, high temperature solid state reactions, thermoelectricity, and physics of dielectrics. This research is entirely company supported. Write, giving details of educational background and prior work experience, to:

J. C. Schroeder Employment Section D Allis-Chalmers Mfg. Co. Milwaukee 1, Wisconsin with Particular Reference to Carcinogenic Properties (Daudel); Molecular Theory of Surface Tension (Harasima); Recent Developments in Molecular Orbital Theory (Longuet-Higgins); Intermolecular Forces and Equation of State of Gases (Kihara); On Statistical Mechanics and Electromagnetic Properties of Matter (Mazur); The Application of the Theory of Stochastic Processes to Chemical Kinetics (Montroll and Shuler).

Because of the large scope of subject material presented in this book a brief review of several selected chapters is indicated. Such a selection undoubtedly reflects the interests of this reviewer. The contribution by Bigeleisen and Wolfsberg represents a critical analysis of isotope effects in chemical kinetics. Both the theoretical and experimental aspects of this problem are elucidated in a comprehensive and comprehensible manner. As a result this paper is of value not only to the specialist but also to those workers interested in applying the isotope technique to problems in reaction kinetics and rate theory.

Of particular timeliness is the contribution of Longuet-Higgins on the application of molecular orbital theory to the electronic spectra of unsaturated hydrocarbons. After a brief outline of the general premises of the MO theory the author reviews the modern theoretical developments on the relationship between the electronic states of a composite molecule and its constituent parts. Whereas the paper on isotope effects devotes a considerable amount of space to the presentation of quantitative data, Longuet-Higgins gives an over-all view of the field of MO theory accompanied by a bibliography to satisfy the more serious student.

Daudel discusses the relationship between molecular structure and carcinogenic activity. The application of modern quantum chemistry to complex organic molecules of interest in biology holds promise in explaining some of the pathogenic properties of chemical substances.

It is apparent that because of the book's diversity in subject matter each chapter reflects the individuality of the various authors in their approach to specialized problems. However, the common denominator is to be found in the development and application of the statistical-mechanical method for the description of macroscopic properties of matter. Advances in Chemical Physics not only looks back at the progress made but also points the way to future developments.

College Physics. By Franklin Miller, Jr. 608 pp. Harcourt, Brace and Co., New York, 1959. \$7.25. Reviewed by B. H. Dickinson, Michigan State University.

WHEN the author of a textbook in elementary physics announces as his goal the task of preparing "a text having maximum clarity and teachability", he assumes a task which far transcends the mere description of phenomena, listing of principles, concoction of problems, and other details connected with the writing of a standard textbook. If, in addition, he proposes to include "every possible aid to diges-