Expanding programs at PHILIPS have created new opportunities for Physicists and Engineers who are capable of participating in Applied Research Programs.

M.S. or Ph.D. in Physics or Electronics. A minimum of 2 to 5 years' experience in one or more of the following fields:

MICROWAVE PROBES

X-RAY FLUORESCENCE
ANALYSIS

X-RAY DIFFRACTIONS
ELECTRON OPTICS
LIGHT OPTICS
VACUUM SYSTEMS
INSTRUMENTATION

Many opportunities for advancement, employee benefits, salary promotions and many other forms of recognition are, of course, available to all willing to progress with us.

Our plant is located in beautiful Westchester County, offering the advantages of suburban living, yet near metropolitan New York area.

We welcome and will treat as confidential all inquiries concerning these positions.

Send your resume, including salary requirements to:

MARTIN G. WOLFERT
100 East 42nd Street—Room 802
New York 17, N.Y.

NORTH AMERICAN PHILIPS COMPANY, Inc.

NORELCO

Improved but indirect methods of determining distances increase the volume of observable space by a factor of 1000. The Hertzsprung-Russell diagram, originally plotted to show the relation between spectral type and absolute magnitude, now becomes a reference scale for intrinsic brightness and hence for the distances of remote stars.

A wealth of information comes from binary stars, visual, spectroscopic, and eclipsing. The mass-luminosity relation in which binaries play a critical role leads to ideas of stellar evolution. Variable stars suggest to the astrophysicist the problem of energy production, while to the cosmographer the cluster varieties map positions of the groups to which they belong. The distance of our sun from the center of the Milky Way has thus been estimated.

Then follows a delightful description of the Milky Way, most beautifully delineated in the Southern Hemisphere. The role of giant O and B stars in mapping its spiral form is confirmed by radio observations of hydrogen revealing its temperature, cloud structure, and density at various distances in the line of sight.

The universe is our goal. Clusters of galaxies embracing spirals, irregulars, and ellipsoidals are described, but for the universe of galaxies, no superstructure has as yet been noted. Interpretation of the red shift as a Doppler effect leads to the theory of an expanding universe in contrast to the theory of continuous creation. Estimates of time, earthly and stellar, appear to corroborate expansion, said to have started 20 to 25 cosmic years ago. The cosmic year, equal to 200 million years, is a convenient time unit; it is the period of revolution of the sun about the center of our galaxy, 27 000 light years away.

We are now in the realm of theory. The lifetime of a star depends on the rate at which it spends its energy. Its demise and descent into the stellar graveyard is postulated by samples in the Hertzsprung-Russell diagram. Apologies for theories and hypotheses are expressed but justified to spur investigators towards newer knowledge. This book is excellent reading; it fully justifies its announced purpose.

Statistical Physics. Vol. 5 of Course of Theoretical Physics. By L. D. Landau and E. M. Lifshitz. Translated from Russian by E. Peierls and R. F. Peierls. 484 pp. (Pergamon Press, England) Addison-Wesley Publishing Co., Inc., Reading, Mass., 1958, \$12.50. Reviewed by R. T. Beyer, Brown University.

THE fame of this series of physics texts has already been heralded by the previous publication of a translation of the authors' nonrelativistic Quantum Mechanics. The appearance of this volume establishes even more firmly the reputation of the authors in the textbook field. The completed series will represent the best comprehensive instructional treatment of physics since that of Sommerfeld, and is, of course, thirty years more up to date.

The text attacks the problem of statistics from the

JUST PUBLISHED

PLASMA DYNAMICS

EDITED BY FRANCIS H. CLAUSER

The Johns Hopkins University

This volume is based on an international symposium on plasma dynamics held at Woods Hole in June, 1958 under the sponsorship of the National Academy of Sciences—National Research Council and the Office of Scientific Research, Air Research and Development Command. The symposium brought together leading scientists from many parts of the world in the fields of astrophysics, fluid mechanics, thermonuclear physics, gaseous discharges, electron beam dynamics, statistical mechanics, and aerodynamics.

It should be emphasized that the book is *not* a mere verbatim transcript of the sessions. Rather, that material served as the basis for this carefully edited, coherent, and smoothly flowing volume which unifies the many original contributions made at the symposium and makes the book of lasting value as a reference work.

Chapter title

Experimental Research on High Temperature Plasmas

The Problems of Thermonuclear Fusion and High Temperature Plasmas

Gaseous Electronic Phenomena

Dynamics of Electron Beams

Statistical Plasma Mechanics

Continuum Plasma Dynamics

Flight Magnetohydrodynamics

Solar, Planetary, and Interplanetary Magnetohydrodynamics

Cosmical Magnetohydrodynamics

Edited by

Richard F. Post

Marshall Rosenbluth

Marvin H. Mittleman

Roy W. Gould

Johannes M. Burgers

Hans W. Liepmann and

Julian D. Cole

Arthur Kantrowitz

Eugene N. Parker

Geoffrey Burbidge

368 pp, 98 illus, 1959—\$12.50

QUANTITATIVE MOLECULAR SPECTROSCOPY AND GAS EMISSIVITIES

By S. S. PENNER

California Institute of Technology

A convenient and accessible source of reference material on basic problems in quantitative molecular spectroscopy and gas emissivities, utilizing the classical results of radiation theory for the solution of these important problems. It deals with topics which fall, to a large extent, into the temperature range intermediate between that of interest to the molecular spectroscopist, on the one hand, and the astrophysicist, on the other. The studies are representative of the types of research problems encountered in connection with the development of modern propulsion devices.

587 pp, 212 illus, 1959—\$15.00

PROJECT SHERWOOD—THE U.S. PROGRAM IN CONTROLLED FUSION

By Amasa S. Bishop

U. S. Atomic Energy Commission

From a review in Science:

"A clear description . . . of the progress thus far in Project Sherwood, the code name of the United States effort to achieve the thermonuclear reaction. The well-written text and the remarkable drawings of 'pinch effects,' 'Perhapsatrons,' and 'Stellerators' make the reading of this book a pleasure."

216 pp, 50 illus, 1958-\$6.50

ADDISON-WESLEY PUBLISHING COMPANY, INC., Reading, Massachusetts, U.S.A

PHYSICISTS ELECTRICAL ENGINEERS

with PhD

Central Research Laboratory — Texas Instruments research center — offers challenging opportunities to PhD's in Physics and Electrical Engineering interested in problems in ferromagnetics. Here, at Central Research Laboratory, you can achieve scientific and professional expansion while working with outstanding professional colleagues. These exceptional openings present excellent opportunities to join one of the nation's fastest-growing companies where unusually generous personnel benefits include profit sharing (in 1958, 15% of base salary).

PHYSICISTS and ELECTRICAL ENGINEERS—with PhD, familiar with the problems associated with evaporated and electrodeposited films; some knowledge of ferromagnetism is required and ultra-high frequency electronics experience is desirable. These opportunities are available for men interested in device technology and capable of working with existing ferromagnetic research and computer technology groups.

PHYSICISTS — with PhD, interested in the fundamental problems in ferromagnetism, particularly those problems which can be studied in thin films. Knowledge of experimental techniques which apply to ferromagnetism is essential.

To find out more about one of these exceptional career opportunities, please write:

LEIGH WATSON, Dept. 3212

Central Research Laboratory

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 1079 . DALLAS, TEXAS

familiar structure of thermodynamics, working into the Gibbs distribution. The emphasis is on the microcanonical ensemble, rather than on grand canonical ensembles, so that on the average the book will appeal more to physicists than to chemists at this point.

The standard problems of gases are treated systematically, and the quantum distributions of Fermi and Bose are introduced early in the text, with a smooth transition to the modern problems of condensed systems, including superfluids.

Of more interest to chemists is the coverage of phase equilibrium, solutions, and chemical reactions, all of which fields are given careful treatments.

Fluctuation-dissipation theory is treated at some length, with applications to both thermodynamic and nonthermodynamic fluctuations.

One of the characteristics of Soviet texts in quantum mechanics is repeated here, in the concluding chapters, in the application of the concepts and consequences of group theory in discussing the symmetry of macroscopic bodies and the theory of second-order phase transitions. While this material is on a rather high level for the ordinary graduate course in statistics, it forms a most valuable addition to the text.

The book closes with a chapter on surface physics, taking up such problems as adsorption, liquid film, and creation of nuclei.

On its over-all merits (including the excellence of the translation) then, this reviewer is enthusiastic about the text, and recommends its widespread use.

Advances in Chemical Physics, Vol. 1. Edited by I. Prigogine. 414 pp. Interscience Publishers, Inc., New York, 1958. \$11.50. Reviewed by Henry Wise, Stanford Research Institute.

PUBLICATION policies of our journal and text book editors have given rise to a new mode of review of recent scientific accomplishments. In general, it appears under a heading entitled "Advances". It seems to accommodate those scholarly contributions too large in size for a journal article or too short for a monograph. In price, however, it approaches the textbook category. As pointed out by the editor of Advances in Chemical Physics, this publication will be devoted to "basic problems that concern the properties of individual molecules and atoms as well as the behavior of statistical ensembles of molecules and atoms". The wide range of subjects chosen for this volume becomes apparent from the table of contents: Statistical-Mechanical Theory of Transport Processes. X. The Heat of Transport in Binary Liquid Solutions (Bearman, Kirkwood, and Fixman); Theoretical and Experimental Aspects of Isotope Effects in Chemical Kinetics (Bigeleisen and Wolfsberg); Dielectric Properties of Dilute Polymer Solutions (de Brouckère and Mandel); Some Physical Aspects of Gaseous Chemical Kinetics (Careri); Transport Processes in Liquids (Collins and Raffel); The Relation Between Structure and Chemical Reactivity of Aromatic Hydrocarbons