SUPERCONDUCTIVITY

Colloquium at Cambridge, England June 30 — July 3, 1959

A Report by E. A. Lynton

OR three and one half days, some seventy physicists from many countries (unfortunately not including the U.S.S.R.) met at Cambridge to discuss the present theoretical and experimental status of superconductivity. From every point of view it was a nearly ideal conference. As the entire meeting was devoted to a restricted subject, there were single sessions which were most interestingly organized: a rapporteur summarized a certain area in about 45 minutes, after which there was an equal time for discussion. This system eliminated the presentation of a tedious number of short contributions and, thanks to the devoted efforts of the rapporteurs, made much clearer the basic questions involved. And then there was the wonderful setting of Cambridge, and the warm hospitality of the hosts, who made all participants feel at home from the moment when they were welcomed in person by Dr. Shoenberg as they arrived, one by one, at Clare College. No effort was spared in organizing all aspects of the scientific program, and in adding to it a most enjoyable social round. There was punting on the Backs and tea at Grantchester (without honey). excursions to stately homes, a much appreciated recital by Messrs, Gough (violin) and Pippard (piano), and, as penultimate joy, a speechless banquet. The smoothness with which everything proceeded belied the extraordinary amount of preparation done by the Shoenbergs and the Pippards, by Faber, and by the other members of the Mond Laboratory; may they be assured that their efforts were unqualifiedly successful.

The one shadow on this otherwise so pleasant meeting was cast by the announcement of the shocking accidental death of Robert Schafroth. To have known him was to have liked him, such was the warmth and charm of his personality, and his memory will be cherished by his many friends.

So much did everyone enjoy the conference that all would welcome a repetition a year or two hence (of course with the same hosts)-but regretfully it must be said that in all probability this has been the last meeting fully devoted to superconductivity. theory and in experiment much work remains to be done in this field, and valuable contributions will be needed and will be made for many years to come. But it is now generally agreed that our understanding of the phenomenon of superconductivity in terms of the Bardeen, Cooper, and Schrieffer theory is such as to remove it from the shrinking list of major unsolved problems. There is much similarity now to the state of affairs in the theory of metals: in both cases the basic mechanisms are recognized and can be described to a good degree of approximation in surprisingly simple terms, in both cases there is no real proof (but also no real doubt) that one is dealing with the true ground state, in both cases a major analytical advance is needed for a rigorous derivation from first principles and for precise calculations of quantitative details.

THIS very encouraging general situation was clearly established in the three sessions of the first day of the conference, during which the theoretical picture was presented by Bardeen (Illinois), by Anderson (Bell Laboratories), and by Wentzel (Chicago).

Bardeen feels that the principal shortcoming of the present theory is its inadequate account of the Coulomb interaction, which should be improved by a more careful treatment of the quasi-particle lifetimes. This would probably lead to different phonon cut-off fre-

Ernest A. Lynton is currently on leave from his position as associate professor of physics at Rutgers University and is spending the year as visiting professor of physics at the Institut Fourier of the University of Grenoble. He is also the recipient of a supplemental Fulbright grant.

quencies for different superconductors and, therefore, explain the empirical variations of the energy gap width for different elements. The further leading problems at this moment according to Bardeen are:

- (a) An explanation of the apparently nonvanishing electron spin paramagnetism in superconductors at 0°K, as shown by the Knight shift.
- (b) A calculation from first principles of the interphase boundary energy between the superconducting and the normal phase, to supplement the phenomenological treatment of Landau and Ginsberg.
- (c) A more careful treatment of electron-phonon scattering, both as applied to ultrasonic attenuation in the case of short electron mean free paths, and also to thermal conductivity.
- (d) A calculation of the nonlinear terms in high field effects.
- (e) A better understanding of thin films and small particles.
- (f) A more detailed treatment of collective excita-

Anderson discussed the place of superconductivity in the general context of the many-fermion problem. The BCS and equivalent theories treat superconductivity in the weak coupling limit of an attractive interaction involving both a potential and a phonon field. There is no real proof that the lowest state obtained is really the ground state without using possibly nonconverging perturbation methods. But the same is true of the weak coupling limit of the repulsive interaction, namely the Fermi sea, of which the sharp drop in density of states is really on the face of it much more unstable. In both cases one firmly believes that the present descriptions are correct, but much fundamental work is needed. Much effort should also be devoted to investigating carefully the transition from the weak to the strong coupling limit.

During the subsequent discussion Wentzel pointed out that the question of the true ground state in both weak interaction limits is really a question of the range of validity of the random phase approximation. Pines (Illinois) enlarged on the interrelation between a better understanding of the Fermi sea and a better criterion for superconductivity, and suggested that the two problems are soluble together. In the present theory of metals one obtains a sharp Fermi surface by treating the interaction of a single excited electron with all the sea, neglecting its interaction with the other excited electrons. In superconductivity one treats the interaction of electrons within a thin shell near the Fermi surface and essentially neglects that with all the rest of the sea.

In his report Wentzel outlined the presently very satisfactory state of the Meissner effect and of gauge invariance in superconductor theory. This has been achieved by taking into account the collective excitations (plasmons) as had first been suggested by Bardeen and worked out by Anderson. Further con-

In the garden of an Elizabethan estate: (left to right) Webber (ONR, London), Mendelssohn (Oxford), Serin (Rutgers) and Miss Serin, Anderson (Bell Labs), Pines (Illinois), Abrahams (Rutgers), Mrs. Nozieres, Redfield (IBM Watson Lab), and Nozieres (ENS, Paris).

Punting on the Backs: Martin (Harvard), Mrs. Martin, Schrieffer (Illinois), Knight (Berkeley).

Touring the colleges: Sewell (Liverpool), the Nozieres, Shoenberg (Cambridge), Dupre (Louvain), Abrahams.

tributions to this problem, in addition to that by Pines and Schrieffer, have recently been made both by Rickayzen and by Bogoliubov. In spite of the great difference of mathematical detail of these last two treatments, they are essentially equivalent.

FTER this first day of theoretical discussion, the A remainder of the conference was devoted to seeing (to quote Shoenberg) whether the experiments fit the facts. Pippard began by showing that on the whole such a fit exists in the interaction of superconductors with electromagnetic radiation of moderate frequencies. There is some question about the temperature dependence of the penetration depth in impure samples, and there is an unexplained variation between the field dependence of the penetration depth of 3-cm waves measured by Pippard, and of 30-cm waves investigated by Mrs. Dresselhaus. But there is no longer any evidence for a nontensorial behavior of the penetration depth in anisotropic samples, and the excellent agreement of the measured surface impedance very near T_c with theoretical prediction has led Pippard to abandon his belief in a temperature dependent range of coherence.

A similarly satisfactory state of affairs exists in very high frequency experiments. Tinkham (Berkeley) pointed out that both the work of the Westinghouse group with microwaves and his own with far infrared show an energy gap of magnitude and temperature variation essentially as predicted by the BCS theory. There is clear evidence that the size of the gap at 0° K (in terms of kT_e) varies from one element to another, and some indication that this size is correlated with the reciprocal of the Debye temperature. The infrared results also show in some elements a certain structure of the absorption edge, which most people ascribe to the presence of multiple pair correlations (excitons) of energy less than single particle excitations, as had been discussed by Anderson.

Goodman (Grenoble) then summarized the thermal properties of superconductors, particularly the specific heat, from which the presence and magnitude of an energy gap can also be clearly inferred. On the whole there is good agreement between calorimetric and high-frequency results, except in the case of niobium. At the lowest temperatures a logarithmic plot of the electronic specific heat of aluminum and of zinc deviates upward from the values predicted by the BCS theory on the basis of a uniform energy gap. This is a strong indication of the anisotropy of the gap in these elements.

Satterthwaite (Westinghouse) put much order into the confused state of the field of thermal conductivity in superconductors. Of the two thermal carriers—phonons and electrons—each has one scattering mechanism for which theory and experiment agree, and one for which there is much confusion. The heat conduction by phonons at the lowest temperatures is expected to be limited by boundary scattering and to vary as the third power of the temperature, and this

is well substantiated experimentally. But when one extrapolates this to higher temperatures and attempts to obtain that part of phonon conduction which is limited by electronic scattering, confusion arises because the electronic scatterers are themselves also carriers of heat. As a result, estimates of this part of the phonon conduction are very unreliable, and disagreement with theoretical predictions not surprising. The situation with regard to the electronic conduction as limited by phonon scattering is equally unsatisfactory, although here the experimental data are probably more reliable than the theoretical calculations. The results with highly pure lead and mercury both show a very abrupt decrease of the conductivity at T_c , whereas very recent calculations of the Illinois group predict a rise of the conductivity in the superconductive state over that in the normal one.

The agreement between experiment and theory in the region of impurity limited electronic conduction is on the whole very good, minor differences between, e.g., zinc and aluminum being probably due to energy gaps of different magnitudes.

The situation with regard to the interphase boundary energy was summarized by Faber (Cambridge). There is quite reasonable agreement between the experimental values obtained by different methods (propagation of the interphase boundary, powder patterns, restoration of thin film resistance, and supercooling). These values also agree with the predictions of the phenomenological theory of Landau and Ginsberg, especially as recently improved by Ghorkov. There is, however, as yet no way of deriving this boundary energy from the BCS theory.

Serin (Rutgers) discussed the effects of both non-magnetic and magnetic impurities. The mean-free-path effect of nonmagnetic impurities on T_c , established by the Rutgers group, has been verified in other laboratories and has been treated theoretically both by Anderson and by Abrahams and Weiss. The latter proceed in the spirit of the BCS theory by calculating the effect of impurity scattering on the interaction matrix elements averaged over an isotropic energy gap. Anderson, on the other hand, considers it essential to start with an anisotropic gap in the ideally pure metal, and believes that the principal effect of impurity scattering is a smoothing out of this anisotropy, leading to a lowering of T_c .

The situation regarding magnetic impurities is very confused. In ternary mixtures investigated by Matthias and others at Bell the smoothly and fairly slowly varying plot of T_c versus magnetic concentration intersects the similarly smooth curve of Curie points. For concentrations past this intersection there is some indication of a simultaneous occurrence of superconductivity and ferromagnetism. In his earlier report, however, Anderson mentioned his doubts about this, and pointed out that the crucial concept of a nonlocal susceptibility in superconductors can lead to a cryptoferromagnetic state with small domains aligned such that the average magnetization vanishes.

Kodak reports on:

a method for forecasting titanic stress in fine detail...the restraining effect of our inhibitions...a little something for the taxpayers

Photoelasticity by the slice

Westinghouse, long known as a hotbed of photoelastic activity, has been nice enough to cast upon the waters of industrial co-prosperity a piece of technique that could help sell more Kodak Contour Projectors. No time must be lost in spreading the word.

Westinghouse took one of these projectors of ours and turned it into a magnifying polariscope. This they did in the interest of reaching reasonable decisions on the mechanical design details to enable a nuclear reactor pressure vessel to withstand the titanic stresses that it must bear.

Scale models were built out of a certain transparent epoxy resin which not only exhibits the well known differential retardation between light polarized parallel and perpendicular to the stresses, but can retain the effect "frozen in" after the pressure is released and the model is literally sliced up in various planes of interest to the stress analysts. The Kodak Contour Projector is what brings the analyst in close, past the gross structure of the pattern, to the all-important fine details where structural failure starts.

Don't bother Westinghouse for a description of the optical, mechanical, and electrical additions they've made to the projector. It's enough that they are publishing a full description of the analytical method (Proceedings of the Society for Experimental Stress Analysis, 17, No. 1). They're not interested in selling projectors. Eastman Kodak Company, Apparatus and Optical Division, Rochester 4, N. Y., is.

Color for facts, not kicks

If we wanted to, we could in good conscience call "S.O. 260" the fastest color film ever made. We don't want to.

There are other reversal color films you can expose on the assumption of an outrageously high index, force-develop, and obtain an image out of. All we're saying is that outrage for outrage, "S.O. 260" loses less in color saturation, maximum density, and fineness of grain than others. This advantage can be so important in data acquisition—flame studies, aerodynamic studies, attitudes of informatively painted flying objects, for example—that we had better not rely on rumor and word of mouth to spread the news of its existence.

This is not intended for the photohobbyist who gets his thrills by bragging to his buddies, "I shot this at an Exposure Index of 600." Wise or foolish, we dislike to see him sacrifice the potentiality of pictorial excellence instead of contriving to put a little more light through his lens. Maybe it's none of our business, but such are our inhibitions. We draw to his attention Kodak High Speed Ektachrome Film, Kodak Ektachrome Film (Process E-3). Kodak Ektachrome Film (Process E-2), and Kodachrome Film, any of which can yield him beautiful and impressive transparencies.

"S.O. 260" currently takes the form of 16mm film with a perforation pitch of 3000" in 100', 200', and 400' lengths and 35mm film of .1870" perforation pitch in 100' and 400' lengths. These are pitches for high speed motion picture cameras. If you recognize that and have a need for data from color changes (changes, not so much the colors themselves) photographed under very unfavorable conditions, initiate an inquiry about "S.O. 260" Film with Eastman Kodak Company, Photorecording Methods Sales Division, Rochester 4, N. Y. You will be put in touch with the proper parties.

Microelectronics

Ever hear of the Diamond Ordnance Fuze Laboratories? It's a Department of the Army agency in Washington. To support DOFL, the average citizen shells out the federal tax on, let us say, several gallons of gasoline a year or a little tobacco. Since a fuze is a device which times an explosion to blow up his enemy, he probably wouldn't mind the expense if it were explained to him. But, mirabile dictu and happy day, prospects brighten that the piddling investment will pay off beyond the dreams of avarice!

DOFL has spawned "microelectron-

ics," the shrinking of electronic assemblies to 1/100 normal size. DOFL became involved through the proximity fuze program, which requires very small and exceedingly rugged components. We are involved through Kodak Photo Resist, Kodak High Resolution Plates, and Kodak Ektagraph Film. Microelectronics may be bigger than both of us. It may make possible the placement of electronic devices inside the body, for diagnosis or for replacement or repair of human organs with electronic equivalents. It may permit a new directness in the study of the central nervous system.

The theme of microelectronics is that if you want environment-immune, highly "intelligent" circuitry that can handle problems of logic and fit into a tenth of a cubic inch of space or so, you quit at an early stage of the design thinking of transistors, diodes, capacitors, resistors, and such. Instead you think of the circuit as one or more plates half a millimeter thick and fabricated as intricately as necessary out of various conductive, semi-conductive, and dielectric materials disposed among the three dimensions of each plate.

The technique (at least prior to mass-scale production) uses Kodak High Resolution Plates on which the geometry of the various sub-circuits is photographed from drawings at great reduction. These then become the masks under which are exposed to ultraviolet light the circuit substrate plates that have been coated with Kodak Photo Resist. Where the mask passes u-v, subsequent processing removes the resist and lavs open the substrate for either removal of material or insertion of other materials by evaporation, printing, electro-deposition, or chemical deposition. In some operations, deposition is done by squeezing material through openings left in a fine screen in accordance with an applied pattern of blocking, photographically reduced to Kodak Ektagraph Film.

The next thing to do is to send to Eastman Kodak Company, Special Sensitized Products Division, Rochester 4, N. Y., for a reprint of "The DOFL Microelectronics Program." Literature on the three Kodak products mentioned here will be thrown in. Thus we nudge you toward great undertakings.

This is another advertisement where Eastman Kodak Company probes at random for mutual interests and occasionally a little revenue from those whose work has something to do with science

Kodak

PTIKO -

Physicists

M.I.T. INSTRUMENTATION LABORATORY, directed by Dr. C. Stark Draper, is famous for outstanding contributions and leadership in the development of high performance flight control and inertial guidance systems making use of an ultimate combination of gyroscopic devices, servomechanisms and electronic components.

we are seeking

PHYSICISTS with considerable understanding of Atomic and Solid State Physics, with interests in cryogenics or optics.

the challenging

undertakings of Physicists at Instrumentation Laboratory include instrumentation of star tracking systems, development of telescope stabilization techniques, general optical and servo test and development, rigid dynamic studies, and theoretical evaluation of "blue sky" types of gyros and accelerometers as well as the practical building of such units as may appear promising.

if you are a

Physicist, with the vision to work on theory and the experience to develop in practice, who is interested in performing these composite tasks in a stimulating atmosphere of constant research and discovery . . . write:

IVAN R. SAMUELS,
Director of Personnel
INSTRUMENTATION
LABORATORY,
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
68 Albany Street
Cambridge 39,
Massachusetts

U. S. Citizenship Required

MAOHMATIKOY

In the binary compounds investigated jointly by the Bell and the NRL groups, the variation of T_c with concentration is almost discontinuous in the crucial region of possible overlap, and there is no clear evidence of the simultaneous occurrence of superconductivity and ferromagnetism in the same sample.

THE last day's sessions were opened by Knight (Berkeley) speaking appropriately enough about the shift in nuclear resonance frequency which bears his name. His recent measurements of this shift in superconducting tin are very similar to earlier results of Reif on mercury, and definitely point to a finite value of the Knight shift at 0°K. The single earlier result of Knight which implied a vanishing of the shift at the lowest temperatures is no longer considered reliable. Clearly the existence of a finite electron spin paramagnetism at 0°K seems to be quite at variance with the electron pairs of opposite spins crucial to the BCS theory, and this is one of the most important questions to be cleared up by further theoretical work.

Knight also summarized various measurements of nuclear spin relaxation times in superconductors, all of which yield the crucial result of an enhancement of the relaxation just below T_c . This indicates unequivocally the existence of an energy gap with the "missing" states piled up on either side, and is in excellent quantitative agreement with the BCS theory.

Morse (Brown) concluded the conference with an account of his investigations of ultrasonic attenuation in superconductors, particularly his very recent measurements on variously oriented single crystals of tin. The ratio of attenuation in the superconductive to that in the normal phase decreases very rapidly with decreasing temperature, in good agreement with the theory, and the variation of this ratio in the low-temperature limit yields a value of the energy gap. In this fashion Morse finds differences of 10 to 20 percent in the gaps in different crystal directions of tin. While there is perhaps some doubt about the numerical value of this gap anisotropy, these experiments appear to leave little doubt about its existence.

During this session Bömmel (Bell Laboratories) gave a brief account of his present use of "hypersound" with frequencies ranging perhaps as high as $100\,000$ Mc/sec. Very preliminary results of the change of attenuation at T_c at a frequency of 30 000 Mc/sec (corresponding to phonon energies of about $0.5~kT_e$) indicate an initial rise of attenuation in the superconductive state, for which there is as yet no theoretical explanation.

This brief account of the various sessions of the most recent Colloquium on Superconductivity will have indicated that much work remains to be done even within the present theoretical frame, and many experiments must still be done or improved. Perhaps this will, after all, provide sufficient reason for another meeting like the one described here—or if not a reason at least an excuse to gather again as pleasantly, congenially, and instructively as was done this time.