fers a detailed development of the Breit-Wigner formula, and gives evidence well provided with experimental results.

Finally, A. Wattenberg examines nuclear reactions at high energies (87 pages). After a summary account of data which can be obtained from such reactions and from the theoretical concepts useful for the understanding of experiments of this type, the author explains the techniques of neutron production and detection which are involved and reviews the relevant methods and the experimental results.

Solid State Physics: Advances in Research and Applications, Vol. 5. Edited by Frederick Seitz and David Turnbull. 455 pp. Academic Press Inc., New York, 1957. \$11.00. Reviewed by Robert W. Hellwarth, Hughes Aircraft Co.

The very excellent and ambitious series of volumes on solid-state physics edited and planned by F. Seitz and D. Turnbull continues with the appearance of Volume 5. The five articles contributed to this volume display quite well the editor's intended balance among theoretical, experimental, introductory, and advanced material.

The most extensive section of Volume 5 is one by M. H. Cohen and R. Reif on Quadrupole Effects in Nuclear Magnetic Resonance Studies of Solids (117 pp.). This section deals quite exhaustively with the "high field" case of interactions where the nuclear magnetic dipole Zeeman splitting is large. (The "low field" case will be treated by T. P. Das and E. L. Hahn in a separately published supplement to this volume.) The theory of quadrupole interactions and line shapes and intensities is developed from scratch and used to discuss many important classes of experiments and results in this field. Crystal structure, bonding, imperfections, and phase transformations are among the topics treated.

Three of the four remaining articles, all under one hundred pages each, treat other experimental fields. Galvanomagnetic and Thermomagnetic Effects in Metals by J.-P. Jan clearly outlines the bewildering array of independent coefficients which describe conductors in magnetic and thermal fields and discusses their relation to the many experimental effects. Although the approach is mainly phenomenological and experimental, some important theoretical results are mentioned. Probably all of the various effects suggested by the title are discussed here with emphasis on Hall and magnetoresistive effects.

C. C. Klick and J. H. Schulman in Luminescence in Solids give a lucid account of the application of modern investigative techniques and concepts of solid-state physics to this technologically important field. The article is primarily concerned with inorganic phosphors whose luminescence either involves single centers, cooperating centers, or charge carriers. The illustrative material is well chosen to stress the physical principles involved. The technology of phosphors is mentioned

only when it is germane to the understanding of the basic mechanisms involved.

Most progress in the study of impurity states in semiconductors has been accomplished through the research with germanium and silicon whose impurities can be most easily controlled over the widest ranges. W. Kohn reviews Shallow Impurity States in Si and Ge with emphasis on the "shallow" states because they are more easily understood by present-day solid-state theory. This section, as those mentioned above, provides a clear introduction to the material as well as a useful reference to workers in the field.

With Space Groups and Their Representations, G. F. Koster contributes the more mathematical part of Volume 5. This monograph brings together a summary of the general theory of space groups and their irreducible representations with tables, diagrams, and physical examples of many specific results. A fairly firm grasp of group-theory concepts is prerequisite for the study of this section. This section is especially valuable in that the author has contributed much of his own in coordinating the methods for finding the irreducible representations for various space groups.

The author and subject indexes round out the considerable value of this volume as a reference and text in these several fields of the diverse body of solid-state physics.

Lectures on Nuclear Theory. By L. Landau and Ya. Smorodinsky. Translated from Russian. 83 pp. Consultants Bureau, Inc., New York, 1958. Paperbound \$15.00. Reviewed by E. M. Henley, University of Washington.

This translation of a series of lectures on nuclear theory given by Landau in Moscow in 1954 should prove a decidedly worth-while addition to any experimental nuclear physicist's library. The book will also appeal to the specialist in other fields who desires insight into the problems of nuclear physics, and should be highly recommended to all physics graduate students. It is thus a pity that the book is so expensive. (Students can obtain it at a special discount price, if it is ordered in quantity.) The lectures, originally given to experimental physicists, are lucid presentations of some of the more important underlying concepts of nuclear physics. The emphasis is on clarity of physical ideas and on the relation of experiments to theoretical interpretation. Experiments that should be carried out to clarify various aspects of nuclear theory are often suggested directly or indirectly. The authors also attempt to point out pitfalls to which hasty generalizations can lead, even though they themselves make a few categorical assertions that do not seem too well founded.

The first three lectures discuss nuclear forces and the two-nucleon problem at low and at high energies. Here, as throughout, physical insight is emphasized rather than rigor or completeness. Nevertheless there is ample discussion of such topics as exchange potentials and isotopic spin, which is introduced in a very natural manner. The meaning of virtual level is clearly given,

World's largest collegiate stadium-University of Michigan.

50 Now's the time to get a YARD LINE SEAT!

The Bendix Systems Division is the newest division of Bendix Aviation Corporation. It is located adjacent to the University of Michigan in Ann Arbor. Its function is to integrate Bendix skills and facilities for systems planning, development and production.

This new organization is being expanded rapidly. It is a fine opportunity to get in on the ground floor of this big and important new part of Bendix, especially for men who feel their present chances for growth are not good.

Specifically, we need men with experience in:

SURVEILLANCE & RECON: radar, infrared, acoustics.
WEAPONS: missiles, aircraft subsystems, guidance and control.
DATA PROCESSING: analog and digital computers, displays.
NUCLEAR: reactors, propulsion, special weapons.
COMMUNICATIONS: radio, digital, data links.
NAVIGATION: radio, inertial, ground-controlled.
COUNTERMEASURES: ECM, decoys, electronic warfare.
OPERATIONS ANALYSIS.

For an interview, write or call (NOrmandy 5-6111) Bendix Systems Division, Ann Arbor, Michigan.

Bendix Systems Division

ANN ARBOR, MICHIGAN

and the theoretical interpretation of experiments is stressed. The fourth chapter considers nuclear structure from the independent particle point of view. This topic is amplified for the light nuclei $(A \leq 25)$ in the next lecture, where the measured magnetic moments of the ground states are employed to deduce information on the shell structure. The degree of detail in this chapter is somewhat out of keeping with the spirit of the other lectures, and some of the conclusions reached are oversimplified. The sixth lecture discusses nonspherical heavier nuclei in terms of the Bohr-Mottelson model. The seventh and eighth chapters bring out the description of nuclear reactions in terms of the statistical (compound nucleus) and optical models. The latter is illustrated for the elastic scattering of high-energy neutrons; the deuteron stripping reaction is also discussed qualitatively. The last two lectures are concerned with π mesons; their properties, including behavior under parity, charge conjugation, and time reversal, are given first. This is followed by an examination of their interactions with nucleons and of the (multiple) production mechanism.

In summary, this series of articles on diversified topics in nuclear physics is very stimulating, even 4 years after the original lectures were given. The translation from the Russian is clear and fluid, and except for minor errors, is well done.

Science and the Creative Spirit: Essays on Humanistic Aspects of Science, By Karl W. Deutsch, F. E. L. Priestley, Harcourt Brown, David Hawkins. Edited by H. Brown for the American Council of Learned Societies. 165 pp. U. of Toronto Press, Toronto, Canada, 1958. \$4.50. Reviewed by Lawrence H. Bennett, National Bureau of Standards.

The authors of the four essays which comprise this book are scholars in the humanities who, meeting together under the auspices of the American Council of Learned Societies, have explored the subject of the interactions between the sciences and the humanities. The essays represent the individual views of the authors, but each essay was critically reviewed by the entire Committee on the Humanistic Aspects of Science, which consisted of the authors and six other scholars. The editor is careful to stress that this volume is to be considered only as a progress report, not as a completed study. Criticism of the book should be seen in the light of this self-imposed limitation.

In discussing the interactions between the sciences and the humanities, the authors realize the difficulty of attempting to consider science as constituting one unit and the humanities as another unit. In fact, there are several attempts made in this volume to define the range of activities of the sciences and the humanities. That their classification is open to debate is seen, for example, in the use of modern advertising writing as a branch of science. The justification here is that advertising writers use the science of information theory in their work.

The editor asks to be excused for making no distinction between basic science and technology; this reviewer believes some distinction must be made if the study of the interactions between the sciences and the humanities is to be meaningful. The editor does make the important point, however, that many scientists attempt to justify increased support for basic research in terms of the improved technology resulting.

Except for an excellent discussion by one of the authors on the creative aspects of science, the book implies that the use of creative imagination is the characteristic most clearly separating the activities of the humanist from the search for facts of the scientist. This lack of appreciation of the essential nature of ideas and imagination in basic science portrays the need for more emphasis to be placed on the creative aspects of science in popular and semi-popular scientific publications.

In spite of the foregoing objections, this book has made a contribution in presenting a fresh approach to a difficult subject.

The Theory of Functions of a Real Variable and the Theory of Fourier's Series. (Reprint of latest edition.) By E. W. Hobson. Vol. 1, 736 pp. Vol. 2, 780 pp. Dover Publications, Inc., New York, 1958. Paperbound \$3.00 each. Reviewed by George Weiss, University of Maryland.

These volumes are the classic account of the theory of real variables as it was known in the first quarter of the twentieth century. Although these books do not contain the modern function theory which deals with abstract spaces, both the mathematician and the physicist will find many valuable discussions which are not contained in modern treatises. For example there is a chapter on the representation of functions as limits of integrals that contains much of interest with regard to representations of the delta function. The range of topics is quite wide, and includes point set theory, the theory of Lebesgue integration with several extensions such as Denjoy and Hellinger integration, the theory of series in general and Fourier series in particular. This set is well worth owning, particularly at the price quoted.

Our Nuclear Future: Facts, Dangers and Opportunities. By Edward Teller and Albert L. Latter, 184 pp. Criterion Books, New York, 1958. \$3.50. Reviewed by Freeman J. Dyson, Institute for Advanced Study.

When a book has been serialized in *Life* magazine and boosted with the heavy weapons of Henry Luce's publicity machine, readers of *Physics Today* probably do not need to be told what it is about. In these circumstances, a reviewer is expected not so much to describe the book as to give vent to his personal opinions on the subject of bomb testing. Previous reviewers have expressed their opinions with varying degrees of heat and eloquence; I shall follow their example.