"Cellular radiobiology" (Powers); "Biochemical effects of ionizing radiations" (Holmes); "Vertebrate radiobiology (lethal actions)" (Bond and Robertson); "Vertebrate radiobiology (pathology)" (Lushbaugh); "Radiochemical separations by ion exchange" (Kraus and Nelson); "Equipment for high-level radiochemical processes" (Garden and Nielsen).

This reviewer was struck by the distribution of references in the volume and, perhaps apropos of nothing at all, made a count of these in each article. (He hastens to add that this is not an accurate count; no analysis of covariance was made, and nothing is to be inferred about the statistical significance of this "survey".) The result: The six physics articles had about 2.6 ± 1.4 literature references per page of text, with no real differference between the two kinds of physics specialties. (Credit was given for references which appeared only in several extensive tables of data.) The six other articles had about 10.0 ± 3 literature references per page of text. High score went to "Radiochemical Separations", with over 14 references per page; low score to the excellent "Hyperons" with less than 1 reference per page. The area of the book devoted to biology and chemistry is something like 30% of the total; this 30% contains some 1050 literature citations while the remainder (physics) contains about 850 citations.

This makes rather spotty reading for a biophysicist. The physics articles are discursive enough so that a "classical" nuclear physicist can read "Hyperons" leisurely, with pleasure and profit, gather motivation for experiments that have been done, and actually learn something. The other papers necessarily contain much less information per word, and sometimes become a series of rather disconnected sentences, or short paragraphs with not much more information than a bare listing of the titles to the original articles. Once it has been decided (as evidently it has) that all of these articles properly belong in a single volume on "nuclear science" then the editors should allocate enough space so that these borderline subjects become as readable as the articles on straight nuclear physics. As it is, it is not clear that the book is worth its price to a biologist. At the same time the biological papers are certainly not lucid enough for a nuclear physicist who is interested in educating himself about the work of his colleagues in a vaguely allied field of science.

Soviet Education for Science and Technology. By Alexander G. Korol. 513 pp. The Technology Press of Mass. Inst. of Technology & John Wiley & Sons, Inc., New York, 1957. \$8.50. Reviewed by Fay Ajzenberg-Selove, Haverford College.

Mr. Korol has written a well-documented and important account of the Soviet educational system as it is directed towards the training of scientists and technicians. The book gives both a clear and an interesting description of the academic and administrative setup of Soviet education.

Soviet Education is divided into three main parts:

the precollege years, college education, and graduate training. As far as scientific training is concerned the two important preparatory school systems are the socalled ten-year schools and the technicums (which are somewhat similar to our vocational high schools but which have an appreciably more advanced terminal level). Mr. Korol discusses the organizations of the schools, the curricula (giving details on contents of courses and time spent on each subject), the level of instruction, examination questions, and the preparation of the teachers. The ten-year curriculum in the sciences is not appreciably different from that of outstanding US "technical" high schools, but it differs greatly, of course, from the minimum requirements for graduation from an average high school. In particular the lack of electives in the Soviet system is in striking contrast with ours. The two basic types of institutions of higher education are the universities and the various kinds of institutes which are geared to specific requirements of a particular type of industry (food and fishing, textiles, etc.) or a particular specialty (medicine, economics, etc.). Mr. Korol discusses the administration of these institutions, the selection of students, the awarding of scholarships, the steering towards needed specialties. the curricula, and the facilities for higher education in terms of faculties, books, and equipment. In particular, the author makes a detailed comparison of the curricula in physics at a Soviet university and at MIT: in the first four years the required courses in physics and mathematics for Soviet students involve approximately fifty percent more class hours than do those for MIT students. Finally, placement of graduates and graduate training facilities are briefly assessed. The text is supplemented by 56 tables, 15 appendices, and a detailed bibliography.

X-Ray Microscopy and Microradiography: Proceedings of Symp. (Cavendish Lab., Cambridge, England, Aug. 1956). Edited by V. E. Cosslett, Arne Engström, H. H. Pattee, Jr. 645 pp. Academic Press Inc., New York, 1957. \$16.50. Reviewed by Cyril Stanley Smith, Institute for the Study of Metals.

The symposium which gave rise to this book was sponsored by the International Union of Pure and Applied Physics with financial support of Unesco. Dr. Cosslett, the secretary for the symposium, contributes a fine summary of the whole field, and his name appears on no fewer than five of the detailed contributions. There are papers describing the design of tubes for microradiography by contact or projection, on reflection microscopy, on the theory of the various techniques, on microdiffraction, and on scanning methods. These papers on the principles of the method and apparatus design will probably remain generally useful when the papers dealing with results in various fields have been supplanted, yet it is amazing to see the wide range of problems to the solution of which microradiography has already contributed significantly. These range from botany, zoology, and medical research to

NEW SHOCK TUBE TESTS MISSILE DESIGNS FOR POLARIS

A report to

Engineers and Scientists

from

Lockheed Missile Systems

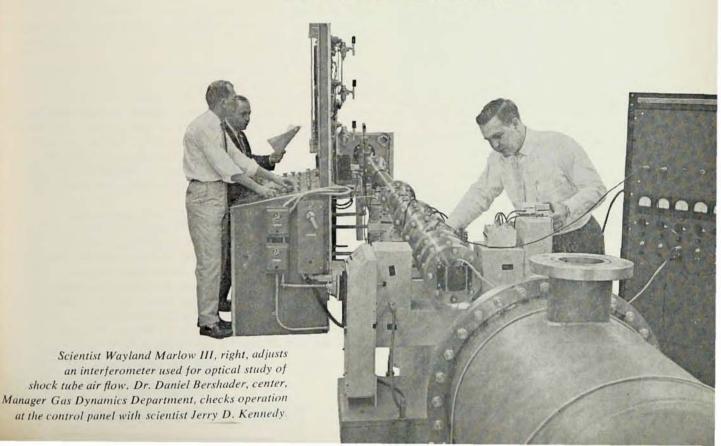
where expanding

missile programs insure more

promising careers

This huge new shock tube—performing basic research and providing ballistic missile design data at speeds up to 20,000 feet per second is now in operation at the division's research and development laboratories. The 44-foot long tube is used for advanced design work on the Polaris solid fuel ballistic missile. Temperatures and pressures generated within the tube simulate those encountered by a long-range ballistic missile as it plunges from space into the earth's dense blanket of air.

In addition, Lockheed scientists are now using magnetically driven gas shock tubes to produce samples of gas at temperatures over 100,000 degrees centigrade and moving at speeds in excess of 30,000 feet per second.


The growing importance of missiles' role in U.S. defense means our own varied programs like Polaris — Earth Satellite — Q-5 will continue to expand. That is why engineers and scientists look to Lockheed Missile Systems for better opportunities to move ahead in their careers.

Openings exist now in our multi-million dollar research and development laboratories near Stanford University and less than an hour's drive from San Francisco. Such positions call for high levels of achievement in Gas Dynamics, Structures, Ionic Physics, Materials Research, Aerodynamics, Thermodynamics, Solid State Electronics, Propulsion, Guidance, Flight Controls.

Qualified engineers and scientists are invited to address inquiries to Research and Development Staff, Palo Alto 9, California.

Lockheed MISSILE SYSTEMS

A DIVISION OF LOCKHEED AIRCRAFT CORPORATION
SUNNYVALE • PALO ALTO • VAN NUYS • SANTA CRUZ • CALIFORNIA
CAPE CANAVERAL, FLORIDA • ALAMOGORDO, NEW MEXICO

NOW AVAILABLE -

a concise new book on

ELECTRICAL DISCHARGES IN GASES

by Dr. F. M. Penning

Written for physicists and all whose work requires a sounder knowledge of this important field

This authoritative, highly readable work makes clear, by means of examples, what mechanisms govern the conduction of electricity through gases. *Topics Discussed*; the non-sustaining arc discharge...the Townsend discharge and breakdown...the glow discharge...the positive column.

Illustrated \$3.00

At your favorite technical bookstore, or write

The Macmillan Company 60 FIFTH AVENUE, NEW YORK 11, N.Y.

ELEMENTARY PARTICLE ACCELERATORS IN ENGLISH TRANSLATION

Supplement 4, 1957 Soviet Journal of Atomic Energy

Eight papers by leading Soviet physicists, presented at the Session on Elementary Particle Accelerators at the All Union Conference on the Physics of High-Energy Particles, Moscow, May 1956. Of great value in work with cyclic or linear elementary particle accelerators. Contents: Physical Design Principles of the 10-Bev Proton Synchrotron; Magnetic Characteristics of the 10-Bev Proton Synchrotron at the Joint Inst. for Nuclear Research; Certain Features of High-Energy Cyclic Electron Accelerators; The Sector Cyclotron; Incoherent Electron Radiation in the Synchrotron and Its Applications in Studying Accelerator Operation; Features of the 280-Mev Synchrotron at the Inst. of Physics, Acad. Sciences, USSR; Experimental Basis for the Theory of Particle Capture in Betatron Acceleration; Concerning the Theory of Particle-Beam Focusing in a Linear Accelerator by a System of Transverse Lenses.

English translation, 75 pages, \$15.00

THE SOVIET JOURNAL OF ATOMIC ENERGY
"ATOMNAYA ENERGIYA" IN OUR COVER-TO-COVER
ENGLISH TRANSLATION—ANNUAL SUBSCRIPTION
12 ISSUES—APPROXIMATELY 1200 PAGES—ONLY \$75.00

1957 issues 1-9 now available.

All translations by bilingual scientists. Clear reproduction by multilith process from IBM "cold type"—includes all diagrammatic and tabular material; books and journals staple bound in durable paper covers. Write Dept PT for free catalogs of our current Russian translation-publishing program.

CONSULTANTS BUREAU, INC.
227 WEST 17th STREET, NEW YORK 11, N. Y.

inorganic fields such as geology and metallurgy—the last named being the first to which microradiography was applied by Neville in 1897.

This field of microscopy is an exciting one of great promise. Not only is it possible to get some idea of local chemical composition (by adsorption or emission methods) and to make accurate three-dimensional images, but the projection methods permit studies to be made at reasonably high magnification with the specimen in corrosive or high-temperature environments that preclude any other method of study.

The predominantly European authors may perhaps regret that the book has been published in the United States, with consequent American spelling and price.

6th Symposium (International) on Combustion (Yale U., Aug. 1956). 943 pp. Reinhold Publishing Corp., New York, 1957. \$28.00. Reviewed by Henry Wise, Stanford Research Institute.

The biennial combustion symposia conducted under the auspices of The Combustion Institute have become a recognized center of international scientific discussion in this rapidly expanding field of research. The sixth of these meetings was held at Yale University in August, 1956. While the preceding symposia emphasized the physical aspects of combustion, such as turbulence, and the chemical aspects, such as reaction kinetics, the Yale meeting was devoted to topics of great current interest. The papers selected for presentation at the Sixth Symposium dealt with (1) ignition and flame propagation in homogeneous combustible mixtures under laminar and turbulent conditions; (2) reactions at high temperatures as encountered in flames, shock waves, and detonations; (3) theoretical and experimental aspects of flame stabilization in fast streams; (4) combustion instability; (5) heterogeneous combustion of solids and liquids; (6) new experimental techniques in combustion research; and (7) applied aspects of combustion processes.

The current "state of the art" is described in several review papers on laminar flame propagation, on flammability limits, and on the structure of laminar, premixed flames. The progress made in our understanding of the fundamental aspects of combustion is most impressive. Yet the application of this knowledge to combustor design has hardly begun. As pointed out by Spalding (UK) the theoretical methods have neglected so far the multidimensional problems encountered in practice.

In addition to the contributed and invited papers, three panel discussions have been included which highlight some of the current problems in combustion research. While Kondratiev (USSR) stressed the role of chemical kinetics in combustion processes, Olson (USA) considered the need for future research on the physical and fluid-dynamic aspects such as turbulence, heat transfer, and combustion oscillations in modern propulsion systems. During an evening discussion dealing with detonation phenomena a brief but lively dis-