mechanics and the derivation of the wave equation, and on one- and two-electron atoms including a discussion of angular momentum (orbital and spin), the formulation of the Pauli exclusion principle, and a sketch of stationary state perturbation theory. Chapters then follow on the periodic system of the elements and on diatomic molecules.

These introductory chapters are clearly written and quickly accustom the reader to the ways of quantal thinking—the mathematical aspect of the subject is everywhere kept to a minimum and various illuminating qualitative arguments are described. The sections on the wave-particle duality, on electron spin, and on the dependence of the electronic Coulomb energy on the symmetry of the orbital wave function struck the reviewer as particularly lucid. On the other hand, no account is given of the calculation of transition probabilities—time-dependent perturbation theory is not even mentioned while only four pages are devoted to the time-dependent Schrödinger equation. As a result, no treatment of quantum dynamics is really included, the book being essentially on quantum statics only.

The core of Heitler's exposition lies however in the discussion of the elements of quantum chemistry contained in the last third of the book. Here, the ultimately electrostatic forces holding atoms together in a covalently bound molecule are treated from the point of view of the atomic orbital approximation first introduced by Heitler and London. The saturation properties of the covalent bond, the relation of the total spin of the various L-S states of the low electronic configurations of an atom to the valency of that atom (with particular reference to carbon), the connection of the spatial character of the electronic wave functions to the bond directional properties, the physical justification of the schematic structural formulae of simple organic compounds (e.g. H-C≡C-H) are all discussed in a masterly, though of course essentially qualitative, fashion. Nevertheless it is a pity that Heitler gives no indication of the power and scope of the rival molecular orbital method in the treatment of covalent bond problems particularly in view of the applicability of this method to the description of the electronic states of macromolecules and solids. Summing up, however, the reviewer can only quote Heitler's last sentence: ". . . it can thus be said that wave mechanics is the tool for a complete understanding, on a physical basis, of all the fundamental facts of chemistry.", and recommend the book strongly to any prospective student of the subject.

Quantum Mechanics (2nd Edition). By F. Mandl. 267 pp. Academic Press Inc., New York, 1957. \$6.50. Reviewed by J. C. Polkinghorne, University of Edinburgh.

It is not surprising that Dr. Mandl's book first published in 1954 has achieved a second edition. It develops quantum mechanics from the viewpoint of Dirac and von Neumann but its treatment is much more elementary than that contained in the two great classical

treatises by those authors. Later in the book the author discusses the applications of group theory to his subject more fully than is usual in elementary texts. Thus we have an introductory textbook presenting its subject with admirable clarity and in such a way that the student is prepared for the more advanced reading that must follow.

These merits were sufficient to ensure that the book should remain in print for some time. However the first edition omitted some topics which should be contained in a first course. The second edition adds a section discussing partial wave analysis and a chapter giving an elementary description of the Dirac equation, and the result is a good book made better.

Neutron Transport Theory. By B. Davison in collaboration with J. B. Sykes. 450 pp. Oxford U. Press, New York, 1957. \$12.00. Reviewed by E. Richard Cohen, Atomics International.

The linearized Boltzmann Equation determines the distribution of neutrons in a reactor as well as the transfer of radiation through a stellar atmosphere. In many respects the former application is more difficult than the latter to handle properly, primarily because of the importance of boundary conditions and hence of the nonasymptotic solutions. Yet, in spite of the interest and importance of the field, the literature of neutron transport theory has been meager. Chandrasekhar's Radiative Transfer dealt exclusively with the astrophysical aspects and mentioned only in passing that the equations were of importance also in the neutron diffusion problem. Kourganoff's Basic Methods in Transfer Problems considered the neutron as well as the photon, but Davison is the first to produce a comprehensive treatise directed exclusively toward the problems of neutron diffusion.

The book establishes the mathematical basis of the neutron transport problem. It is not a treatise on reactors; the physics of neutron diffusion is treated only to the extent required to provide an intelligent basis for the Boltzmann Equation. The major emphasis is on the exact solution of this equation in those instances where this is possible, and the development of approximate methods and series solutions as general methods of attack where exact solution is impossible. Neutron Transport Theory is therefore a treatise on the mathematics of the problem rather than the physics of it. From the strictly mathematical viewpoint however, there is a lack of rigor which will bother no one but the mathematician who will himself be capable of supplying the lack. The only serious omission in this regard is the problem of the nonuniform convergence of the spherical harmonic method which has been so thoroughly investigated recently by Kofink (although in honesty to the author it must be admitted that Kofink's work appeared too recently for inclusion).

The comparison between the scope of Davison's Neutron Transport Theory and Chandrasekhar's Radiative Transfer is interesting and illuminating. Both volumes begin with the same equation and yet there is little du-