that shorter exposures or smaller telescopes may be used), and may facilitate differentiating an object from the random fluctuations of its background. McGee points out that some of the advantages of photoelectronic techniques relative to photographic are their linearity, conversion efficiency, and increased bandwidth; they are more versatile in that electromagnetic deflection techniques can compensate for motions of the instrument, and that uniform background noise can be subtracted electronically. The fact that a photocell is practically linear, and that it can be calibrated and used repeatedly, introduces marked simplifications in data reduction; the disadvantage that it measures but one quantity at a time may be overcome by using television tubes and scanning techniques.

The next chapter contains nine papers on resolution problems and scintillation, and Chapter 6 consists of six papers dealing with wide-angle optical systems and aspheric surfaces. The five papers of the final chapter are on filter photography and thin films.

The papers are on the whole quite readable, and both the longer surveys and shorter summaries are well enough documented to enable the reader to follow up particular topics. The fact that much of the material would not have been regarded as "optics" even ten years ago, and the variety and scope of the papers, indicate the vitality of this field. The developments in photoelectronic techniques are particularly noteworthy; Kopal indicates that the 200-inch Hale telescope using one of McGee's image-storage tubes would extend the limits of observable space to those that could be reached by a 2000-inch telescope using existing photographic techniques.

The History of Mathematics. By Joseph E. Hofmann. Translated by F. Gaynor and H. O. Midonick. 132 pp. Philosophical Library, Inc., New York, 1957. \$4.75. Reviewed by Robert T. Beyer, Brown University.

In 1951, Oskar Becker and Joseph Hofmann wrote a History of Mathematics (Geschichte der Mathematik) in which Professor Becker treated the contributions of the Greeks and the Romans, while Professor Hofmann covered mathematical developments in the Near and Far East, and in medieval and modern Europe. In 1953, a slighter volume appeared, due to Hofmann alone, in which the principal emphasis was placed on the High Middle Ages and Early Baroque periods of Western history (1100–1600). It is this latter volume that has now been translated in the Philosophical Library series.

In a sense, the choice is somewhat unfortunate, since the Becker-Hofmann work is a more complete history. The Hofmann original, which appeared as a member of the Sammlung Göschen series of texts, bore a label of Volume I, and suggested a future completion of the work. No such label appears on the English translation so that the title of the book becomes misleading.

Two features of the German text have been omitted from the translation: references for further reading at the end of each chapter and a very detailed bibliography of source material as part of the index. These features raised the German edition to the level of a valuable source reference for anyone interested in the field. Their omission in the translation alters the nature of the work to that of a popular and terminal presentation.

In this latter role, the book is handicapped by its precise and rather advanced mathematical style, difficulties that are not made any easier by occasional lapses into Germanic word order on the part of the translators, especially in the earlier portions of the work.

One cannot avoid comparing the book with the history written by Profesor Dirk Struik. The Becker-Hofmann volume, or a Hofmann treatise extended into modern times through a second volume, would provide excellent competition for Struik's book. The actual English edition falls far short of such competition, especially in view of its relatively high price.

After having made so many critical remarks, the reviewer should point out that the coverage of the period 1100-1600 is an outstanding one, and that the book can serve as a useful reference for mathematics of this period.

Semiconductor Surface Physics: Proceedings of the Conf. on the Physics of Semiconductor Surfaces (Philadelphia, Pa., June 1956). Edited by R. H. Kingston. 413 pp. U. of Pennsylvania Press, Philadelphia, Pa., 1957. \$8.00. Reviewed by Joseph G. Hoffman, Roswell Park Memorial Institute.

Twenty-three technical papers, nine of which have accompanying discussions, present the work of forty-two contributors and new data about semiconductor surfaces. While germanium and lead sulfide are the semiconductors about which most of the experiments center, the results are suggestive and raise questions about surface phenomena in many other kinds of materials.

There are four main subdivisions of the subject in this book as follows: I, Clean Surfaces (2 papers); II, Real Surfaces (11 papers); III, Adsorption and Catalysis (4 papers); and IV, Oxidation (5 papers). The clean surfaces are on germanium. They are examined for their electrical properties, and are explored by electron diffraction with and without gas (oxygen and hydrogen) covering. Real surfaces are studied for field effect, photo effect, inversion layers, velocity of relaxation processes, and 1/f noise. Two of the papers on real surfaces deal with lead sulfide in the forms of photoconductive films and cleaved crystals. Adsorption and catalytic processes are examined where gas reactions occur and space charge boundary layers form on the surface, or, in another direction, where the photo effect plays a role in catalysis. Chemisorption is examined for the role it plays in long time changes in surface work function which can be induced by exposure to light or electrostatic fields. Oxidation of metals is discussed with emphasis on the nucleation theory.

While it is not possible to mention here all the contributors and their many experiments, it can be said that this conference represents an innovation. To paraphrase P. B. Weisz's remarks (p. 247) this book is unique because it describes a joint conference of physicists, who have been thinking about the cloud of electrons inside the semiconductor surface, and chemists, who have been occupied with the cloud of gases outside that surface. Both physicists and chemists have met at the surface and the results are enlightening and stimulating. As G. Schwab (p. 295) says in concluding his paper: "One more gap between physics and chemistry has been closed, leaving both shores in a reinforced state."

There is a short subject index and a longer author index. Numerous graphs and figures adequately support the strictly technical text. The book is highly commendable; it is a good compilation of diverse theoretical and experimental aspects of the timely subject of semiconductor surfaces.

Differential Equations Applied in Science and Engineering. By Harold Wayland. 353 pp. D. Van Nostrand Co., Inc., Princeton, N. J., 1957. \$7.50. Reviewed by Walter Gautschi, National Bureau of Standards.

This is an elementary text on ordinary and partial differential equations, prepared mainly for use in undergraduate courses in applied science and engineering. By means of instructive examples the author has succeeded in presenting a clear picture of the several steps which are involved in describing a physical situation in terms of differential equations and in ultimately solving these equations. Although the emphasis lies on formal techniques the author is careful either to state the underlying theoretical facts without proof or to give references to more extensive texts if more advanced mathematics is involved.

After a short introductory chapter there follows a chapter on vector algebra and vector analysis. Concepts such as gradient, divergence, curl are introduced in their coordinate-independent form. A rather careful treatment is given to the derivation of explicit expressions in various coordinate systems.

The proper subject of the book is taken up in Chapter 3 with a short account of special first-order differential equations and general remarks on linear n-order equations. Among the latter, those with constant coefficients are treated in more detail. Use is made of differential operators. The important case of linear second-order equations is dealt with in the following two chapters. There is a brief summary of the usual classification of singularities and the power series expansions associated with them. The theory is applied to two typical examples: Bessel's and Legendre's differential equation. Several properties of Bessel functions, modified Bessel functions, and Legendre functions are developed.

While boundary value problems, as they occur in classical mathematical physics, have occasionally been considered before, the main attack on these problems is launched in Chapter 6 and extends through Chapter 7.

NEW AND IMPORTANT McGRAW-HILL PHYSICS BOOKS

ELEMENTS OF PHYSICS

By ALPHEUS W. SMITH, Ohio State University; and JOHN N. COOPER, U. S. Naval Postgraduate School. New Sixth Edition. Ready for Second Semester Classes.

A thorough revision and modernization of a well-adopted basic text, with much detail eliminated to make room for recent developments. Emphasis continues to be on the practical application of physics to everyday living, covering such areas as mechanics, sound, heat, light, electricity, electronics, atomic and nuclear physics. A reorganized section on electricity and magnetism is included, with over 200 new figures and increased illustrative material on color in color. It is designed for liberal arts students and for engineering courses where calculus is not a prerequisite.

ELECTRONIC SEMICONDUCTORS

By E. SPENKE. Translated by D. JENNY; H. KROEMER; E. C. RAMBERG; and A. H. SOM-MER, RCA Laboratories. Ready in November

Fills the need for a systematic and rigorous introduction to semi-conductor physics. It develops this in a logical and consistent manner from simple concepts. Part I gives a self-contained descriptive treatment of the basic concepts necessary for the understanding of semiconductor devices; Part II develops a theoretical basis for these considerations. It is the first systematic presentation of the subject from a pedegogic point of view. Basic principles, rather than specialized topics, are comprehensively treated.

FUNDAMENTALS OF OPTICS

By F. A. JENKINS, University of California, Berkeley, and HARVEY E. WHITE, Pittsburgh Radio Station WQED. New Third Edition. 640 pages, \$8.50

A revision of a leading undergraduate text in Geometrical and Physical Optics. As before, emphasis is on the experimental side of the subject. Each chapter is introduced by a description of the observed facts and followed by an account of the theory with stress on the understanding of physical principles rather than on a rigorous mathematical treatment. New material includes graphical methods of tracing rays through prisms and a brief introduction to concentric optics.

SEND FOR COPIES ON APPROVAL .

