to lose its identity as a field, attaining the same degree of distinctiveness as, say, "liquid air temperature" physics. For the present, however, there are several areas of investigation which fall predominantly in the low-temperature region. Outstanding among these are the fields of superconductivity, superfluidity in liquid helium, and the study of low-temperature magnetism, including its application to magnetic cooling.

Kältephysik II is a treatment of these uniquely lowtemperature fields. There is a chapter dealing with lowtemperature magnetism by I, van den Handel, one on magnetic cooling by D. deKlerk, a chapter on the experimental aspects of superconductivity by B. Serin, one on the present state of the theory of superconductivity by J. Bardeen, and a final chapter on liquid helium phenomena by K. Mendelssohn. The text reflects the enthusiasm of the writers for their subjects and makes interesting, informative reading. The treatment of superconductivity is particularly effective in that both the experimental and theoretical aspects are presented in detail. The other three chapters reflect predominantly the measurement aspects of their subject. The relevant interpretive concepts are well discussed but the approach tends to be more descriptive than mathematically formal. As the text indicates, recent progress in the understanding of low-temperature magnetism and magnetic cooling rests, to a large degree, on paramagnetic resonance results and the related spin Hamiltonian theory. Few reviews of this important theory exist, and, thus, a detailed discussion of at least the theoretical aspects of crystal field and nuclear effects in magnetism would have made an additional useful chapter. Perhaps this is to appear in another volume of the Handbuch.

In recent years, several other good reviews of superconductivity, superfluidity, and low-temperature magnetism have appeared. Kältephysik II makes an important contribution to this literature. Possibly the most important gain lies in the fact that much of this subject material is controversial and it is useful to have this documented presentation of the viewpoint of these authors. Additionally we note that the summary of magnetic cooling results is impressively thorough. With the currently increasing interest in low-temperature physics, the book should find application both as an up-to-date introduction to the subjects discussed and for reference.

Electrical Conductivity II. Vol. 20 of Handbuch der Physik. Edited by S. Flügge. 491 pp. Springer-Verlag, Berlin, Germany, 1957. DM 112.00 (if part of series DM 89.60). Reviewed by H. P. R. Frederikse, National Bureau of Standards.

While the first volume on electrical conductivity was devoted largely to metallic conduction and electronic structure, this second book deals with semiconduction, ionic conduction, and electrolytes. This volume expresses clearly the international nature of the *Handbuch*; of the four articles, one is written in German, two in English, and one in French. Madelung's contribution ("Halbleiter") opens with a very comprehensive and

thorough treatment of the physics of homogeneous semiconductors. The second part discusses the non-homogeneous effects (p-n junctions, transistors, surface and contact phenomena). Two short chapters on optical and magnetic properties and a survey of the properties of semiconducting materials conclude the article. The author has devoted quite a few pages to a listing of expressions for transport parameters in their most general form. This reviewer would have preferred a somewhat more extensive treatment of a few other aspects, e.g., cyclotron resonance. He was impressed, on the other hand, by the completeness of the literature references.

The second contribution, by A. B. Lidiard, surveys the ionic conductivity of crystals (mainly alkali halides, silver halides, and several fluorites). The intrinsic and extrinsic conduction mechanisms are discussed in terms of the formation and the mobilities of Schottky and Frenkel defects. A chapter on ac conductivity is concerned with dielectric losses due to defects and polarization phenomena. The last chapter of this article presents an excellent treatment of diffusion in ionic crystals and its relation to electrical conductivity.

A special article is devoted to the "Electrical Properties of Glass" written by J. M. Stevels. In 41 pages the author has compiled a considerable amount of data on the dc and ac conductivity of many glasses. The scattered nature of the information and the vagueness of the conclusions reached (if any) demonstrate again that glass is still one of the least understood solids. The final contribution to this volume entitled "Electrochimie", by E. Darmois, deals with the properties of electrolytic solutions and molten electrolytes. The author reviews a large variety of topics in this field: ion mobility, emf of electrolytic cells, association of ions, Debye-Hückel theory, electro-osmosis, electrophoresis, pH, etc. The very direct style in which this article is written makes it a pleasure to read. It is perhaps unfortunate that so many tables contain numerical values of parameters without any indication of the units.

System Engineering: An Introduction to the Design of Large-Scale Systems. By Harry H. Goode and Robert E. Machol. 551 pp. McGraw-Hill Book Co., Inc., New York, 1957. \$10.00. Reviewed by T. Teichmann, Lockheed Missile Systems Division.

The combination of the intricate new devices of modern technology into ever more complex systems has in recent years called forth a more disciplined and well defined approach to the design of such systems. In essence, of course, this approach is not new, for without it none of the great large-scale engineering (and military) programs of the past could have succeeded. Until recent times, however, it was not necessary to so specifically articulate the comprehensive nature of this approach, nor did it need to embrace such a variety of separate disciplines as are now required. But it now has become necessary to make a more conscious and systematic effort to combine them smoothly in any complex program.