field. Yet Figure 84 was noted to have reversed captions, and the discussion on page 107 left a bit of confusion over finding "a peak . . . at about 45° K and a minimum . . . at about 75° K" by measurements "in the temperature range from 1.6°K – 8°K". The author states on page 102 that the experimental finding of ultrasonic scattering varying directly with frequency "is probably an approximation to the theoretical form of the scattering curve". Presumably an equivalent statement would be that the finding is in agreement with the theoretical scattering curve.

In brief, Relaxation Spectrometry should serve as a useful introduction to many before relaxation becomes a long lost art.

Optics. By Bruno Rossi. 510 pp. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. \$8.50. Reviewed by V. Twersky, Sylvania Electronic Defense Laboratory.

This well written and well organized text starts with elementary geometrical optics, and continues through diffraction, polarization, electromagnetic theory, and on to photons and complimentarity. The presentation more or less traces the evolution of the concepts basic to optics, and the progression from the early mechanical analogs to the more abstract mathematical models should leave the student with an appreciation of how a scientific discipline develops. The problems are well chosen to supplement the text and to give a quantitative appreciation for the magnitudes of various phenomena; answers are given to half. Using essentially elementary methods (only slight knowledge of calculus is assumed) the book goes rather deeply into various topics which are barely touched on in analogous texts; e. g., Huygens' principle, rays in nonhomogeneous media, Abbe's theory of image formation, the propagation of electromagnetic waves, and radiation from an accelerated charge. Although other topics could have benefitted from the same treatment, and although the utility of the material could have been increased by supplementary bibliographies, the book as it stands is perhaps the best available for an intermediate course.

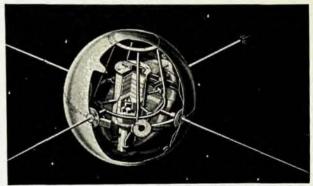
Scientific Uses of Earth Satellites. Edited by James A. Van Allen. 316 pp. The U. of Michigan Press, Ann Arbor, Mich., 1956. \$10.00. Reviewed by Arthur Beiser, New York University.

In January of last year the Upper Atmosphere Rocket Research Panel met in Ann Arbor to discuss experiments that could be performed with the aid of artificial satellites and to consider in some detail the specific instrumentation that would be required. Thirty-three of the papers presented there have been collected and edited by James A. Van Allen, the chairman of the panel, into a handsome volume which, while parts of it are already obsolete and some of the rest no doubt headed for a similar fate, still retains enough solid information to justify its publication. As might be expected, all sorts of topics are covered, from albedo to

x-rays, but they have unfortunately not been indexed. The first dozen or so papers concern themselves with the flight of the satellite—its orbit and expected perturbations, drag, tracking, etc. The rest deal with phenomena for whose measurement a satellite might prove ideal—cosmic rays, ultraviolet radiation, auroral streams, geomagnetism, ionospheric structure, meteors, interplanetary dust, and the cloud cover of the earth. One may conclude from this book that the satellite program is in imaginative as well as thorough hands.

Relaxation Methods in Theoretical Physics. Vol. 2. By R. V. Southwell. 522 pp. Oxford U. Press, New York, 1956. \$8.80. Reviewed by R. B. Lindsay, Brown University.

This is the second volume of a continuation of the author's book Relaxation Methods in Engineering Science, which appeared in 1940 and which was expanded in the first instance in a volume bearing the present title, published in 1946. The three books form, therefore, an extended treatise on the interesting method of approximate computation which the author has developed over a period of years for handling difficult boundary value problems in physics. Such problems involve in the main second and fourth order ordinary and partial differential equations.


The relaxation scheme of approximate solution stems from the so-called "Moment Distribution Method" of Hardy Cross in the solution of girder frameworks in engineering statics. However it has been extended by Southwell to problems in dynamics as well, including among others the vibrations of nonuniform membranes and electromagnetic oscillations in Klystron tubes. By and large the present volume is devoted to stress and strain analysis in two-dimensional continua, though three-dimensional problems are briefly touched on.

In essence the relaxation method replaces any continuum whose behavior is being studied by a discrete net of values of the independent variable or variables. In the differential equation describing the system the derivatives are replaced by finite differences involving values of the wanted function at various points in the net. If the correct solution were known (including of course the assigned boundary values) substitution into the sum of all derivative terms plus the known functions entering into the equation would naturally yield zero for all points of the net and its boundary. However, for arbitrarily chosen values of the wanted function at each net point the above expression has a residual nonvanishing value. The idea of the method is (by finding out how much change is produced in the values of the residuals when the value of the wanted function at a single net point is changed by a small but otherwise arbitrary amount) gradually by successive trials to "relax" the residual at every net point to zero.

The book contains a host of practical hints for facilitating this process in connection with numerous important problems. However, it is clear that any reader who desires to use the method must develop his own com-

ENGINEERS, Electronic & Mechanical, PHYSICISTS:

Melpar's work on the satellite is one of many diversified projects.

More than 90 projects at Melpar give wider scope to men of talent

At Melpar the problems posed by our more than 90 current projects allow you to work in the area of your choice and make contributions on advanced levels.

Our dynamic growth (we've doubled in size every 24 months for the past 11 years) constantly creates new middle and top level openings; our policy of *individual recognition* allows you to compete for them *strictly* on merit, and to receive financial compensation limited only by your ability.

As a member of a Melpar project group you'll enjoy freedom and a team spirit found only in a young organization of our size. Each project group is charged with responsibility for solving problems from conception to prototype. This means that you gain invaluable experience in interrelated spheres, essential to eventual directorship responsibility.

Living is relaxed and good in the Washington, D. C. area with its mellow climate and spacious suburbs. Our new airconditioned laboratory is well-instrumented with an eye to future needs and is situated on a wooded 44-acre tract.

DUE TO OUR DIVERSIFICATION, OPENINGS EXIST IN PRACTICALLY EVERY PHASE OF ELECTRONIC R & D.

Qualified engineers will be invited to visit Melpar at company expense. For detailed information on openings, the laboratory, and our industry-free location write:

3250 Arlington Boulevard Falls Church, Virginia putational tricks through long practice. The author has convinced himself of the advantage of the scheme over the standard iterative procedures and points out its value to those who must be content with simple desk computing machines. It is not clear that this advantage would be maintained if the method were geared to the use of large-scale digital computers. It would be of interest to test this point and this will doubtless happen in the near future, since the rapid, approximate solution of the differential equations of physics and technology is now and will continue to be a very big business.

Ernest Rutherford: Atom Pioneer. By John Rowland. 160 pp. Philosophical Library, Inc., New York, 1957. \$4.75. Reviewed by M. H. Blewett, Brookhaven National Laboratory.

In view of the amount of effort involved in the writing of a book, any book, there is great reluctance, at least on the part of this reviewer, to condemn without an attempt to find some praiseworthy features. However, in the present case, this is difficult.

In the first place, it is hard to know just why this book was written. There is no introduction by the author to tell us of the purpose; it seems that a serious biographer owes at least this much to his readers. There is no new material here. The author was not a close friend of Rutherford-they had barely met. The author is not a scientist whose penetrating insight from the point of view of today's knowledge of nuclear physics can bring us fresh glimpses of the tremendous contributions made by Rutherford. In fact, the technical laxity provides almost constant irritation to any physicist, sufficient to take one's attention from the biographical details. It may be that the author had hoped to appeal to a younger audience, to inspire some teenager to become one of our badly needed future scientists. I have not had the benefit of such a person's reaction to the book but feel that it would not serve this purpose. The descriptions of scientific adventures are a little too pat, everything goes so smoothly; life in a physics laboratory is just not like that (thank goodness).

Lord Rutherford was a great physicist, he was a stimulating personality, and he truly enjoyed his life and experiences. The story of his life is exciting and deserves to be well known by scientist, future scientist, and layman. In this book, he just does not come alive; the author tells us he is great and tells us that he was very human, but the figure remains wooden throughout. Were this the only information available, one might not be quite so harsh, just because a knowledge of the man and his works is so valuable. However, there are other and very readable books about Rutherford that are readily available. For example, the "official" biography by A. S. Eve (Cambridge University Press, 1939) contains all the information included in the book under review but in the much more interesting form of Rutherford's own letters and in the words of one who knew him well. On the other hand, if Eve's book appears somewhat intensive, a physicist can obtain a very good