
ENGINEERS AND SCIENTISTS:

WORK ON ADVANCED PROJECTS LIKE THIS!

Honeywell's Variable Inlet Diffuser Controls Keep the "Hustler" Hustling

As mach numbers advance, even fractional errors in inlet-air diffuser positioning reduce thrust tremendously.

Yet a fixed diffuser designed for optimum pressure at a given high mach number may be so inefficient at a lower mach number as to render it impossible for aircraft to reach design speed.

In the U.S.A.F.'s first supersonic bomber, Convair's B-58 Hustler, this problem was solved by Honeywell's variable inlet-air diffuser systems—the most accurate known. They are automatically controlled to the proper parameters to achieve maximum pressure recovery and mass air flow matched to engine requirements.

The Challenges to Come!

Variable inlet diffuser systems are just one of 114 research and development projects in which Honeywell Aero is engaged. These projects are in the basic areas of:

INERTIAL GUIDANCE • FLIGHT CONTROL SYSTEMS
LIQUID MEASUREMENT SYSTEMS • VERTICAL, RATE
AND INTEGRATING GYROS • DIGITAL AND ANALOG
COMPUTERS • JET ENGINE CONTROLS • AIR DATA
COMPUTERS • BOMBING COMPUTERS • TRANSISTOR
AMPLIFIERS • INSTRUMENTATION

Each of these projects offers exceptional career opportunities for capable engineers and scientists.

Write today For more information concerning these opportunities, send your inquiry or résumé to: Bruce D. Wood, Technical Director, Dept. TA11B, Honeywell Aero, 1433 Stinson Boulevard, Minneapolis 13, Minnesota.

Honeywell Aeronautical Division

ments in instruments used in the observation of highenergy particles. These will be of great interest to all experimenters in high-energy nuclear physics. There then follows a series of papers on related fields—antiproton physics and nucleon-nucleon scattering. The next sections deal with the field-theoretical aspects of pion physics, while the rest of the symposium treats the important aspects of pion-nucleon interactions (scattering, photoproduction, production by nucleons, mesonic atoms, interactions with complex nuclei).

Although this volume is mainly directed towards the specialist, the summarizing papers which precede each section are in general written with sufficient clarity to be useful to any physicist interested in acquainting himself with the latest developments in this field. As one would expect, the conference had the broadest possible international representation; it is perhaps noteworthy (although no longer very surprising) that the significant contributions to the symposium showed as broad a national spectrum as did the participation.

The Physics of Music. By Alexander Wood. 255 pp. Dover Publications, Inc., New York, 1956. \$4.00. Reviewed by R. B. Lindsay, Brown University.

This is a reprint without change of a volume first published in 1944 by Methuen of London and the Sherwood Press in the United States. It received a favorable and adequate review by R. H. Oppermann in the Journal of the Franklin Institute (238, 384, 1944). Its reproduction at this time in a relatively inexpensive edition is an indication of the interest which still exists in the fundamental acoustics of music. Though the work suffers from the inadequacy of the treatment of recent developments, particularly in the fields of sound recording and reproduction and room acoustics, it remains an admirable introduction to the subject for the non-specialist.

La Quantification en Théorie Fonctionnelle des Corpuscules. By Jean-Louis Destouches, 141 pp. Gauthier-Villars, Paris, France, 1956. Paperbound \$5.84. Reviewed by J. Polkinghorne, University of Edinburgh.

The school lead by M. L. de Broglie has long been devoted to the investigation of modifications and extensions of wave mechanics. In this book M. Destouches proposes a system of mechanics in which a particle is represented not by a geometrical point in physical space but by a function u in some separable function space. These functions are taken to be in some sense more objective than the familiar wave functions and are required to satisfy a nonlinear equation derived from analogy with hydrodynamics. This wider system is to include both classical and quantized solutions and the latter are to be distinguished by their satisfying a certain stability condition.

The precise physical significance of the *u* functions is not made clear. Moreover the whole scheme is developed in the most general and symbolic form so that

To that rare breed of men who can "see" the shape of things to come:

We can use your ideas in Large Rocket Engineering

We have a small but heavyweight group here at Rocketdyne known as the Preliminary Analysis & Design Section.

These are our idea men. It's their job to see the Big Picture... to approach outer-space projects without earthbound prejudice... to anticipate problems and sense the likeliest ways to solve them. They are qualified experts in a broad range of fields. Some have extraordinary imaginations; others are brilliant analysts; but all share the ability to hit the highlights without becoming enmeshed in the details. In short, they are scientific skirmishers who scout each new challenge—then summon research and development specialists to meet it.

If this sounds like your kind of group, you may be the very man we're seeking for one of the several jobs now available. We can't describe them in detail here, but they include Controls, New Concepts (nuclear and ion applications), Preliminary Design, Fluid Mechanics, Heat Transfer, Engine & Missile Systems, and Military Operations Analysis.

We can use men with advanced degrees and solid experience in control systems and power-plant design. If you are a young engineer or physicist with an M.S. or Ph.D. and an analytical turn of mind, we can offer on-the-job training in many pioneering fields where experience is practically nonexistent.

Please tell us about yourself—what you've done...what you'd like to do. Write: A. W. Jamieson, Rocketdyne Engineering Personnel Dept. PT-4, 6633 Canoga Ave., Canoga Park, California.

ROCKETDYNE R

A DIVISION OF NORTH AMERICAN AVIATION, INC.

BUILDERS OF POWER FOR OUTER SPACE

ORO ANNOUNCES Challenging Openings in

OPERATIONS RESEARCH

Operations research is a fast growing and practical science attracting some of the best brains in the country. Its future is unlimited. If you want to join a group of pioneers in this exciting field, we invite you to investigate the openings on our staff.

ON OUR PART WE OFFER:

- 1. A record of experience in operations research, out-distanced by perhaps no other organization.
- 2. A scrupulously maintained professional approach and atmosphere.
- 3. The team approach to problem solving. On each team are representatives of varied disciplines—sometimes three, occasionally as many as a dozen.
- Fully equipped digital and analog computing facilities.
- 5. ORO occupies several buildings in Chevy Chase, Maryland, one of America's most attractive suburbs. Pleasant homes and apartments in all price ranges are available. Schools are excellent. Downtown Washington, D. C., with its many cultural and recreational advantages is but a 20-minute drive.
- 6. Favorably competitive salaries and benefits, extensive educational programs, unexcelled leave policy.

FOR DETAILED INFORMATION, WRITE:

OPERATIONS RESEARCH OFFICE ORO

The Johns Hopkins University

7100 Connecticut Avenue Chevy Chase, Maryland no concrete comparison with nature seems possible. In the concluding chapter the author is able to obtain the well-known spectra of a harmonic oscillator and the hydrogen atom and points out analogies with theories of Čap and Bopp. The real difficulty that bedevils this and other similarly interesting theories is that it is much more likely that an advance in our knowledge will come from a new physical principle rather than by exploiting mathematical analogies.

It is strange that, while French paperbacks are highly priced, the art of mechanical page cutting still seems to be unknown in France.

Astronomy and Physics. Vol. 3 of Proceedings of the 3rd Berkeley Symp. on Mathematical Statistics and Probability. (U. of California, Dec. 1954 & July-Aug. 1955) Edited by Jerzy Neyman. 252 pp. U. of California Press, Berkeley & Los Angeles, Calif., 1956. \$6.25. Reviewed by C. Payne-Gaposchkin, Harvard College Observatory.

The Berkeley Symposia are doing a valuable service in bringing together authoritative presentations of current scientific problems, and a still more valuable service by publishing them promptly. The volume under review unites a group of contributions to astronomy and a shorter series of papers on theoretical physics.

The Hertzsprung-Russell diagram has rightly dominated our ideas of stellar evolution for more than thirty years. Indeed, we first began to regard this problem in modern terms when the importance of the relation between the luminosities and colors of stars was recognized. The recent advances in this field are the results of the new precision furnished by photoelectric photometry, and of the recognition of the very definite and restricted patterns shown by the H-R diagrams of suitably chosen groups of stars. The characteristic arrays of luminosity and color shown respectively by the globular and galactic clusters pointed the way to the modern conception of stellar populations. They provide criteria of age and origin that are forming a basis for convincing theories of the evolution of stellar systems and of stars.

The material on clusters is excellently presented by Harold L. Johnson, who has established the three-color photometric system that has become the standard for such studies. His discussion of the evolutionary significance of the data is closely interwoven with the observations and ideas of Allan R. Sandage.

The colors and luminosities of stars in the solar neighborhood are presented and discussed by Olin J. Eggen; he draws the important conclusion that there is a main sequence "certainly less than 0^m2, and probably less than 0^m1 wide". He also presents evidence for a clearly defined sequence of subdwarfs.

The array for the M dwarfs is critically presented by Gerald E. Kron, with the conclusion that the sequence is probably multiple. The extremely important white dwarfs and subdwarfs are discussed by Jesse L. Green-