for PHYSICISTS interested in new Semiconductor Concepts

at RCA's new Semiconductor Headquarters in Suburban Somerville, New Jersey

RCA's accelerated semiconductor program makes available unusually fine opportunities for physicists for the development of design and fabrication techniques for semiconductor devices of an advanced nature. Experience in product development and processing in the solid state field including instrumentation and measurement. Some background in theoretical analysis and experimental solid state physics required.

Liberal Benefit Program Relocation Expenses Paid

submit resumé of education and experience to:

Mr. R. W. BAUMANN, Employment Manager Dept. SE-22

SEMICONDUCTOR DIVISION

RADIO CORPORATION OF AMERICA Somerville, New Jersey

getting a bargain, for the execution of the book, in binding, printing, and in figures, is excellent. I wonder, however, to what extent this type of approach will hold its own with the increasing number of more specialized and more coherent annual volumes entitled: "Advances in . .", or "Progress in . . .", or "Annals of . . .", each of which deals only with a small field of physics, such as nuclear physics, or cosmic rays, or solid-state physics.

Elements of X-Ray Diffraction. By B. D. Cullity. 514 pp. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. \$10.00. Reviewed by R. Smoluchowski, Carnegie Institute of Technology.

This book offers a very thorough but also a very elementary presentation of the basic elements of x-ray diffraction and its applications. It will be most useful to various x-ray laboratory technicians, and, in teaching, it will be suitable for an undergraduate course in x-ray crystallography for metallurgical engineers. In the reviewer's opinion it is not sufficiently advanced to serve as a textbook either for chemistry or physics students or for graduate students in metallurgy. This limitation stems from the fact that, apart from a short appendix, the notion of the reciprocal lattice is not used and that the powerful rotating crystal method is only briefly treated. Apart from this (planned) restriction the book is very well written, covers the ground in a systematic manner, and is very neatly published. Illustrations are numerous and excellent.

The book consists of three sections: fundamentals (4 chapters), experimental methods (3 chapters), and applications (10 chapters). The first two comprise less than half of the text so that the accent, quite rightly, is placed on applications. Of particular value are the excellent chapters on diffractometric techniques, on single crystal orientation, on texture determination, on chemical analysis, and on stress measurement. Of special pedagogical value are problems appended at the end of each chapter and a set of answers to these problems at the end of the book. The book can be highly recommended to all who, without special background, want to become acquainted with x-ray crystallography.

Physics for Everybody. By Germaine and Arthur Beiser. 191 pp. E. P. Dutton and Co., Inc., New York, 1956. \$3.50. Reviewed by Walter C. Michels, Bryn Mawr College.

It is indeed unfortunate that public understanding of our profession has been deteriorating just at the time when the research activities of physicists have been undergoing a mushroom-like growth, when our national interests demand the education and wise use of increasing numbers of physicists, and when the physical sciences have become an essential and pervasive part of our culture. In contrast with the present, physics was far better understood in the two decades that preceded