

Amplification

The billion-fold amplification of the image left by light in silver halides, a problem which has interested many scientists, is only one of current problems being attacked by Technical Operations, Incorporated. Your association with Technical Operations' scientific staff can mean comparable amplification . . .

for your career as a

Physicist or Mathematician

It can also mean:

- · simple, sensible salary policies
- management by scientists
- long-range security
- · unusual joint company-employee savings plan

Senior scientists will find limitless opportunity in experimental research and development—in chemistry, physics, nucleonics and electronics. Challenging positions are available in theoretical work in physics, operations research, and other fields.

*Dr. Bernard Manning, of Technical Operations' Chemistry Group.

Address: Robert L. Koller

TECHNICAL OPERATIONS

INCORPORATED
Research and Development

for business, industry and government

6 Schouler Court Arlington 74, Massachusetts engineers will be able to subscribe individually. It appears that the cost of good technical translation runs high.

The issue under review contains six articles. One is on a small digital computer, two are on analogue computers, two are on magnetic amplifiers, and the last is a survey from *non-Russian* engineering periodicals of new developments in industrial pneumatic automation.

Because of space restrictions it is impossible to comment in detail about each article; three are mentioned briefly. The digital computer discussed in the first article is one designed for the mathematics department of Dresden Technical College. It uses a magnetic drum rotating at 100 rps and a frequency of 100 kc for digit pulses. Though the machine has some interesting features, it is believed that most of the techniques used are well known in this country. Similarly, though it is interesting to read what the Russians are doing in the field of magnetic amplifiers, the two articles on magnetic amplifiers contain little that is new to an American engineer working in this field. The numbers that are presented, where comparisons can be made, check those in English and American journals.

This initial translation raises a host of questions about the policy to be adopted for translating Russian technical articles. Clearly it is of value to know what the Russians are doing in physics, engineering, and mathematics. However, the question arises whether the translated articles present the very latest research being carried on in Russia. Perhaps instead of publishing a translation of every issue and every article of a specified Russian journal, it might be wiser to have the Russian articles reviewed in translation by experts in the respective fields, and then publish only those that make a significant contribution. Since American physicists and engineers are already overburdened trying to keep up with the literature published in English, this may be a way to stimulate them to read Russian articles that have been translated into English.

Linear Feedback Analysis. By J. G. Thomason. 355 pp. (Pergamon Press, England) McGraw-Hill Book Co., Inc., New York, 1955. \$8.50. Reviewed by M. L. Stitch, Hughes Aircraft Company.

Though Bode's classic work tends to make superfluous any other book covering the general principles of feedback stability, the present textbook has much merit. The eleven chapters cover LaPlace Transformation, Feedback Circuits, Stability of Feedback Systems, and some practical chapters on Feedback Amplifiers, Feedback Integrators, and Differentiation and Stabilized Power Supplies all in 355 pages. This has necessitated a racing style not quite as comfortable as Bode's, but the fact that ten years have elapsed since Bode's work appeared and the inclusion of the last three chapters on Amplifiers, Integrators and Differentiators, and Power Supplies, have made Thomason's book very useful to students.