

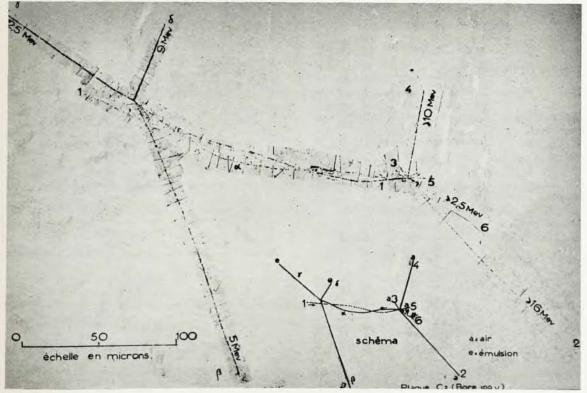
NEWS

and VIEWS

Cosmic Rays

A Symposium on Cosmic Rays took place at the California Institute of Technology, in Pasadena, from June 21 to June 23. The occasion was the eightieth birthday of Robert A. Millikan, a man who, for a quarter of a century, through his personal work and that of his pupils, had a decisive influence on the development of cosmic ray research.

Most cosmic ray scientists from this country and several from abroad attended the meeting. Dr. Millikan delivered the opening address. Invited papers, covering the multiple aspects of the cosmic ray problem, were presented by Carl D. Anderson, Pierre Auger, Robert B. Brode, J. Clay, G. Cocconi, Walter Heitler, Serge A. Korff, C. M. G. Lattes, Louis Leprince-Ringuet, Frank Oppenheimer, J. Robert Oppenheimer, George D. Rochester, Bruno Rossi, Marcel Schein, Manuel S. Vallarta, and John A. Wheeler. Many other physicists took part in the discussion.


It was the first large conference on cosmic rays to be

held in this country since the Cosmic Ray Symposium at the University of Chicago in 1939. People who attended both conferences could not help being impressed by the great progress made in the intervening years, despite the long parenthesis of the war. Even more striking was the pace at which research is progressing in the present days, as evidenced by the amount of recent information presented in the official reports and brought forward during the discussions. As a typical example, one might mention the discussion which developed on the subject of the behavior of mesons at rest. Eight physicists, belonging to seven different laboratories, contributed the results of experiments either just completed or still in progress. These results added up to a much more complete and consistent picture than was available previously. In particular, the work of Sard by means of neutron detectors, together with the photographic evidence brought forward by Lattes and with the cloud chamber results of Wang and Chiang presented by Brode and by Reynolds respectively, served to clarify the hitherto very obscure phenomenon of the nuclear absorption of negative mesons. Results described by Schein and by Valley gave quantitative information on the probability that nuclear absorp-

VERY HEAVY MESON: This is a rarely photographed cosmic ray double star. The star at the right has emitted a meson (track alpha) which has engendered the three-pointed star at the left. This much is clear. The origin of the first star (at the right) is not so certain. It was probably made by the particle whose track is marked 1, which goes from left to right (because the ionization increases that way) straight through the center of the star. On the basis of grain-

counting, track 1 falls between the meson track (alpha) and the track made by the proton (beta) that sprang from the second star. This evidence, and the fact that the original particle produced the alpha meson (whose mass is probably 300, since the star has three branches), points to a meson of mass greater than 800. There are already several arguments in favor of the existence of such a very heavy meson.

Louis Leprince-Ringuet, Hoang Tchang Fong, Louis Jauneau et Daniel Moreller, Ecole Polytechnique, Laboratoire de Physique

tion, rather than spontaneous decay, takes place when negative mesons come to rest in different substances. A partial answer to the very important problems of the energy of decay electrons was given by the results of Anderson and by the measurements of R. W. Thompson described by Rossi.

Another subject which was discussed at great length was that of the nuclear interactions, which now appear to play a much more important role in all cosmic ray phenomena than had been realized in the past. Cloud chamber pictures of these interactions were presented by Fretter, by Rochester, and by Rossi, the last reporting work done at MIT by C. Y. Chao. Electrical methods for their detection were described by Korff and by Rossi. The production of mesons in nuclear interactions was discussed by Schein and by Rochester. It was shown by Rossi that these nuclear interactions are responsible for most of the electrons and photons observed in the atmosphere.

The still puzzling phenomenon of air showers was the subject of the reports by Auger and by Cocconi. New and more accurate measurements of the meson mass were reported by Brode. The very recent data obtained at Berkeley on artificially produced mesons (both ordinary and heavy mesons) were described by Lattes.

A very important subject of discussion was the existence in cosmic rays of mesons different from the so-called 'ordinary meson' and 'heavy meson.' There was general agreement as to the evidence for the existence of a neutral meson of mass approximately equal to 90 electron masses. The existence of mesons still heavier than the heavy mesons was strongly indicated by experimental results reported by Brode, by Leprince-Ringuet, and by Rochester. The appearance of electronic radiation in nuclear interactions reported by Rossi was linked to the possible production in these interactions of a heavy neutral meson of very short lifetime.

Important new information concerning the nature of the primary cosmic radiation was also presented during the meeting. Frank Oppenheimer reported on the evidence obtained at Minneapolis and at Rochester for the existence of heavy nuclei among primary cosmic rays. Rossi described the work of R. I. Hulsizer at MIT which shows that high energy electrons or photons are not present in any appreciable amount in the primary radiation.

The connection of solar phenomena with sudden changes in cosmic ray intensity was analyzed by Vallarta. The theoretical interpretation of the fundamental cosmic ray phenomena was discussed by Heitler, by Robert Oppenheimer, and by Wheeler.

B. R.

Condon Cleared

The Atomic Energy Commission made public on July 15, in a memorandum, its decision on the continued security clearance of Dr. Edward U. Condon, whose position as Director of the National Bureau of Standards and other related atomic energy activities required his reinvestigation under the Atomic Energy Act. After examining reports compiled in two FBI investigations and

other relevant information, the five Commission members agreed that they have "no question whatever concerning Dr. Condon's loyalty to the United States" and that they consider his continued clearance in the best interests of the atomic energy program.

This action does not dispose of the general charges that he is a security risk, made by the House Un-American Activities Committee. Dr. Condon's efforts to answer these charges before the Committee have so far met with no success.

High-Voltage High School

Benjamin Siegel's 1948 seniors at El Cerrito High School in California rivaled the work of the 1947 seniors whose construction of a cyclotron last year he described in the August Physics Today. This year's group built a Van de Graaff electrostatic generator with a capacity of one hundred thousand volts, a cloud chamber, a wind tunnel, and a six-inch reflecting telescope—all at a cost of about fifty dollars.

Awards

Herbert H. Hoover, research pilot for the National Advisory Committee for Aeronautics, received the Octave Chanute award for 1948 from the Institute of Aeronautical Sciences for "his contributions to the application of flight test procedures to basic research in aerodynamics, and development of methods for scientific study of transonic flight."

Eli Franklin Burton

Eli Franklin Burton, chairman of the department of physics at the University of Toronto, died on July 6 at the age of 69. Dr. Burton was internationally known for his work in developing the electron microscope.

Jean P. Cooley

Jean P. Cooley, 54, for twenty years a member of the physics faculty of New York University's Washington Square College, and in charge of the Army's short-wave research project there during World War II, died on July 19.

Harry Diamond

Harry Diamond, chief of the electronics division of the National Bureau of Standards, died suddenly at his Washington home on June 21, 1948. He was one of the inventors of the radio proximity fuse.

Charles Tobias Knipp

Charles Tobias Knipp, emeritus professor of physics at the University of Illinois and noted for his pioneer experimental work in rain-making, died on July 6 at the age of 78. His other work included research on the conduction of electricity through gases.

Frank Rieber

Frank Rieber, geophysicist, whose seismic devices greatly advanced the exploration for oil, died of a heart attack at the age of 57 on June 30.