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Abstract. This study investigates the stability conditions for an n-chain Kapitza pendulum system. A single Kapitza pendulum has 
an interesting property in that its stable equilibrium position is the upright position. The motion of the pendulum can be separated 
into a small-yet-fast component and a large-yet-slow component. This property extends to the n-chain system. This study, through 
the separation of scales technique, confirms that the small, fast component does not diverge with 𝑛𝑛 and finds the criteria for the 
stability of the 𝑛𝑛th pendulum. In doing so, this study also finds an upper bound for the sum of the fast components. Additionally, 
numerical simulations of the n-chain Kapitza system showed a trend of increasing unstable states with 𝑛𝑛. 

INTRODUCTION 

An interesting variation of the classical pendulum, a single Kapitza pendulum is a system that consists of a typical 
pendulum setup with a pivot that oscillates vertically by a function 𝐴𝐴(𝑡𝑡). This vertical oscillation, when rapid enough, 
causes the stable equilibrium of the system to switch to the upright position, with the downward hanging position 
switching to the unstable equilibrium position, as when 𝜃𝜃 = 0  in Fig. 1(a). This phenomenon can be analyzed 
algebraically by separating the angular displacement of the pendulum from the vertical, denoted as 𝜃𝜃, into a fast-yet-
small component 𝛿𝛿 and a slow-yet-large component 𝜙𝜙, as in [1]. This separation of scale can be observed in [2] and 
[3]. Reference [5] shows a two-chain Kapitza pendulum where the fast oscillations seem faster for the top pendulum. 
Extrapolating this to a general n-chain Kapitza pendulum, we can conjecture whether the fast oscillations of an n-
chain Kapitza pendulum will grow, shrink, or stay constant with 𝑛𝑛. Also, within an n-chain Kapitza pendulum, we can 
wonder how additional joints in the form of a higher 𝑛𝑛 value will affect the pivot oscillation 𝜔𝜔 needed to keep the 
system at a stable equilibrium. 
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FIGURE 1. The coordinate system and setup of variables for (a) a single Kapitza pendulum and (b) an n-chain Kapitza 
pendulum. (c) The potential energy graph for a single Kapitza pendulum. 

 



THEORETICAL MODEL 

For a single Kapitza pendulum, as defined in Fig. 1(a), we can define its position vector as 𝑟𝑟 =
(𝑙𝑙 sin 𝜃𝜃,  𝑙𝑙 cos 𝜃𝜃 + 𝐴𝐴), where 𝐴𝐴 = 𝑎𝑎 cos𝜔𝜔𝜔𝜔, the oscillatory function of the pivot. Then, the Lagrangian is  

 
𝐿𝐿 = 𝐾𝐾 − 𝑈𝑈 = 1

2
𝑚𝑚�𝑙𝑙2𝜃̇𝜃2 − 2𝐴̇𝐴𝑙𝑙𝜃̇𝜃 sin𝜃𝜃 + 𝐴̇𝐴2� − 𝑚𝑚𝑚𝑚(𝐴𝐴 + 𝑙𝑙 cos 𝜃𝜃).    (1) 

As the pivot oscillation function 𝐴𝐴(𝑡𝑡) is given by the system, the only free variables are 𝜃𝜃 and 𝜃̇𝜃. After substituting 
Eq. (1) into the Euler-Lagrange equation, we get the following equation of motion:  
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑑𝑑

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃̇𝜃

= 𝑙𝑙𝜃̈𝜃 − 𝐴̈𝐴 sin 𝜃𝜃 − 𝑔𝑔 sin𝜃𝜃 = 0 .     (2) 

Following Kapitza’s insight in [1], we try a solution of 𝜃𝜃(𝑡𝑡) = 𝜙𝜙(𝑡𝑡) + 𝛿𝛿(𝑡𝑡), where 𝛿𝛿(𝑡𝑡) is assumed to be a fast-
yet-small oscillation and 𝜙𝜙(𝑡𝑡) is a slow-yet-large oscillation. We assume that 𝛿𝛿 is small enough that sin 𝛿𝛿 = 𝛿𝛿 and 
cos 𝛿𝛿 = 1. Essentially, we are decomposing 𝜃𝜃(𝑡𝑡) into two components that operate at different time scales and 
magnitudes. Substituting 𝜃𝜃(𝑡𝑡) = 𝜙𝜙(𝑡𝑡) + 𝛿𝛿(𝑡𝑡) into Eq. (2) and using trigonometric angle addition identities, we get 
the following ordinary differential equation (ODE): 
 

𝜙̈𝜙 + 𝛿̈𝛿 + 𝜔𝜔2𝑎𝑎
𝑙𝑙

cos𝜔𝜔𝜔𝜔 sin𝜙𝜙 + 𝜔𝜔2𝑎𝑎
𝑙𝑙
𝛿𝛿 cos𝜔𝜔𝜔𝜔 cos𝜙𝜙 − 𝑔𝑔

𝑙𝑙
sin𝜙𝜙 − 𝑔𝑔

𝑙𝑙
𝛿𝛿 cos𝜙𝜙 = 0.    (3) 

Given the drastically different time scales at which 𝛿𝛿 and 𝜙𝜙 oscillate, we can assume that the angular frequency of 𝛿𝛿 
is magnitudes faster than that of 𝜙𝜙. Since 𝜙𝜙 and 𝛿𝛿 are sinusoidal functions, 𝛿̈𝛿 is, consequently, magnitudes larger than 
𝜙̈𝜙. As in [6], when the torque of the pivot oscillation exceeds the torque of the gravitational force, we can assume 
𝜔𝜔2𝐴𝐴 ≫ 𝑔𝑔 as our condition for stabilization. In that case, the last two terms of Eq. (3) can be ignored. Given the 
extremely small scale of the fast oscillation 𝛿𝛿, we can approximate |𝛿𝛿| ≪ 1. Consequently, we can ignore the fourth 
term in Eq. (3). This yields  

𝛿̈𝛿 + 𝜔𝜔2𝑎𝑎
𝑙𝑙

cos𝜔𝜔𝜔𝜔 sin𝜙𝜙 = 0.           (4) 

As we have assumed the angular frequency of 𝛿𝛿 is magnitudes faster than of 𝜙𝜙, by analyzing Eq. (4) within the time 
scale that 𝛿𝛿 operates in, we can effectively treat 𝜙𝜙 as a constant. Integrating Eq. (4) twice with respect to 𝑡𝑡 gives 
 

𝛿𝛿(𝑡𝑡) ≈ 𝑎𝑎
𝑙𝑙

cos𝜔𝜔𝜔𝜔 sin𝜙𝜙.           (5) 

As we will investigate the stability conditions of the 𝑛𝑛th pendulum later in the paper, a graph of the potential energy 
function of the single Kapitza pendulum will suffice for now. According to [7], the effective potential of the system 
is as shown in Fig. 1(c). The potential is at a stable equilibrium when 𝜙𝜙 = 0, meaning that unless the pendulum passes 
the unstable equilibrium points (the two peaks next to 𝜙𝜙 = 0), the pendulum will return to the upright position. 

In the general case of an n-chain Kapitza pendulum, the setup is as shown in Fig. 1(b), with each pendulum bob 
having a uniform mass 𝑚𝑚 connected by a rigid rod with negligible mass of length 𝑙𝑙. 𝜃𝜃𝑖𝑖 is the angle of the 𝑖𝑖th pendulum 
with the vertical, and the pivot point is oscillating vertically by the function 𝐴𝐴(𝑡𝑡) = 𝑎𝑎 cos𝜔𝜔𝜔𝜔. We define the origin as 
the position of the pivot point when cos𝜔𝜔𝜔𝜔 = 0 and  𝑟𝑟𝚤𝚤��⃗   as the position of the 𝑖𝑖th pendulum bob. Then,  𝑟𝑟𝚤𝚤��⃗  is 
 

𝑟𝑟𝚤𝚤��⃗ = �𝑙𝑙 ∑ sin𝜃𝜃𝑗𝑗𝑖𝑖
𝑗𝑗=1 , 𝑙𝑙 ∑ cos 𝜃𝜃𝑗𝑗𝑖𝑖

𝑗𝑗=1 + 𝐴𝐴�.                   (6) 

From Eq. (6), we can find the kinetic and potential energies of the 𝑖𝑖th pendulum. We find the Lagrangian by summing 
the potential energies of all 𝑛𝑛 pendulums and subtracting that from the sum of their kinetic energies. For the sake of 
clarity, we define a new variable 𝑢𝑢𝑖𝑖 ≡ (𝑛𝑛 + 1 − 𝑖𝑖). Simplifying the nested summations in the Lagrangian gives 
 

L = 𝑚𝑚��
1
2 𝑙𝑙

2ui𝜃𝜃𝚤̇𝚤
2

𝑛𝑛

𝑖𝑖=1

+ 𝑙𝑙2�� ui cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘)
𝑖𝑖−1

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=2

𝜃̇𝜃𝑖𝑖𝜃̇𝜃𝑘𝑘 − 𝑙𝑙𝐴̇𝐴� uj𝜃𝜃𝚥̇𝚥 sin 𝜃𝜃𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝑛𝑛𝐴̇𝐴2� 

−(𝑚𝑚𝑚𝑚𝑚𝑚∑ ui cos 𝜃𝜃𝑖𝑖  𝑛𝑛
𝑖𝑖=1 + m𝑔𝑔𝑔𝑔𝑔𝑔),     (7) 



where the first line is the kinetic energy terms and the second line is the potential energy terms. We can get the equation 
of motion for the 𝑖𝑖th pendulum from the Euler-Lagrange equation:    

�𝑔𝑔 + 𝐴̈𝐴�𝑢𝑢𝑖𝑖sinθi − 𝑙𝑙 �� 𝑢𝑢𝑖𝑖  𝜃̇𝜃𝑘𝑘2
𝑖𝑖−1

𝑘𝑘=1
sin(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘) + � 𝑢𝑢𝑘𝑘  𝜃̇𝜃𝑘𝑘2

𝑛𝑛

𝑘𝑘=𝑖𝑖+1
sin(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘)� 

−𝑙𝑙 �𝑢𝑢𝑖𝑖𝜃̈𝜃𝑖𝑖 + � 𝑢𝑢𝑖𝑖𝜃̈𝜃𝑘𝑘 cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘)
𝑖𝑖−1

𝑘𝑘=1
+ � 𝑢𝑢𝑘𝑘𝜃̈𝜃𝑘𝑘 cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘)

𝑛𝑛

𝑘𝑘=𝑖𝑖+1
� 

+ 2𝑙𝑙 ∑ 𝑢𝑢𝑘𝑘 𝜃̇𝜃𝑖𝑖𝑛𝑛
𝑘𝑘=𝑖𝑖+1 𝜃̇𝜃𝑘𝑘 sin(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘) = 0.       (8) 

Since cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘) = 1 for 𝑖𝑖, 𝑘𝑘 = 𝑛𝑛, we can tack a cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘) term onto the 𝑢𝑢𝑖𝑖𝜃̈𝜃𝑖𝑖  term in Eq. (8) and integrate it 
within the ∑ 𝑢𝑢𝑖𝑖𝑖𝑖−1

𝑘𝑘=1 𝜃̈𝜃𝑘𝑘 cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘) term to form ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑘𝑘=1 𝜃̈𝜃𝑘𝑘 cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑘𝑘), a transformation only valid when 𝑖𝑖 = 𝑛𝑛. 

Since we are interested in the stability of the 𝑛𝑛th pendulum, we let 𝑖𝑖 = 𝑛𝑛 to get its equation of motion. Additionally, 
as nonsensical terms such as 𝑢𝑢𝑛𝑛+1 are not properly defined in our summation, we take their value to be zero:  

sin𝜃𝜃𝑛𝑛 �𝑔𝑔 + 𝐴̈𝐴� − 𝑙𝑙 ∑ 𝜃𝜃𝑘̈𝑘 cos(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑘𝑘)𝑛𝑛
𝑘𝑘=1 − 𝑙𝑙 ∑ 𝜃𝜃𝑘̇𝑘

2 sin(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 0. (9) 

As we did for 𝜃𝜃 in the single Kapitza pendulum case, we let 𝜃𝜃𝑖𝑖 ≈ 𝜙𝜙𝑖𝑖 + 𝛿𝛿𝑖𝑖. The same assumptions that we applied 
to 𝛿𝛿 and 𝜙𝜙 in the single Kapitza pendulum case, we now apply to 𝛿𝛿𝑖𝑖 and 𝜙𝜙𝑖𝑖. Simplify Eq. (9) for the fast component 
δ and applying the same conditions as we did to the single Kapitza pendulum case gives 

∑ 𝛿𝛿𝑘𝑘 cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘) 𝑛𝑛
𝑘𝑘=1  = 𝑎𝑎

𝑙𝑙
cos𝜔𝜔𝜔𝜔 sin𝜙𝜙𝑛𝑛. (10) 

The maximum value of the left-hand side occurs when cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘) = 1, and the maximum value of the right-hand 
side occurs when sin𝜙𝜙𝑛𝑛 = 1. Using these maximal values, we obtain the upper bound for fast oscillations in an n-
chain Kapitza pendulum system as 

∑ 𝛿𝛿𝑘𝑘𝑛𝑛
𝑘𝑘=1 ≤ 𝑎𝑎

𝑙𝑙
cos𝜔𝜔𝜔𝜔. (11) 

Now that we have found a restriction on 𝛿𝛿 , we turn our focus to the conditions under which 𝜙𝜙𝑛𝑛  is in stable 
equilibrium in the upright position. According to [1], 𝛿𝛿 for 𝑛𝑛 = 1 is proportional to cos𝜔𝜔𝜔𝜔. As shown in Eq. (11), 
given that an arbitrary sum of 𝛿𝛿𝑘𝑘 is a multiple of cos𝜔𝜔𝜔𝜔, we can make an ansatz that there exists an 𝜖𝜖 such that 𝜖𝜖𝑘𝑘 ≡
𝛿𝛿𝑘𝑘 cos𝜔𝜔𝜔𝜔⁄ . Our ansatz also implies that 𝛿𝛿 is a sinusoidal function with a period of 𝜔𝜔. We can average Eq. (9) over a 

time of 2𝜋𝜋 𝜔𝜔⁄  by taking its time integral from 𝑡𝑡 = 0 to 2𝜋𝜋
𝜔𝜔

. Since 𝛿𝛿 ∝ cos𝜔𝜔𝜔𝜔, ∫ 𝛿𝛿𝑘𝑘 𝑑𝑑𝑑𝑑
2𝜋𝜋
𝜔𝜔
0 = 0 and ∫ 𝛿𝛿𝑘𝑘

2𝜋𝜋
𝜔𝜔
0 cos𝜔𝜔𝜔𝜔 = 1

2
𝜖𝜖𝑘𝑘. 

Applying the same three assumptions on 𝛿𝛿 and 𝜙𝜙 we used when solving the equation of motion for the single Kapitza 
pendulum gives the following equation: 

𝑔𝑔
𝑙𝑙

sin𝜙𝜙𝑛𝑛 −
𝑎𝑎𝜔𝜔2

2𝑙𝑙
𝜖𝜖𝑛𝑛 cos𝜙𝜙𝑛𝑛 = 𝜙̈𝜙𝑛𝑛 + ∑ 𝜙̈𝜙𝑘𝑘 cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘)𝑛𝑛−1

𝑘𝑘=1 + ∑ 𝜙̇𝜙𝑛𝑛
2 sin(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘)𝑛𝑛

𝑘𝑘=1 .                 (12) 

To investigate the stability conditions, we must first derive an expression for the potential energy of the 𝑛𝑛th pendulum. 
We notice one of the terms in the identity  𝜙̈𝜙𝑛𝑛 = 𝑑𝑑

𝑑𝑑𝜙𝜙𝑛𝑛
�1
2

 𝜙̇𝜙𝑛𝑛2� resembles a kinetic energy term. Thus, we integrate Eq. 
(12) with respect to 𝜙𝜙𝑛𝑛 to get

𝑔𝑔
𝑙𝑙

cos𝜙𝜙𝑛𝑛 −
𝑎𝑎𝜔𝜔2

2𝑙𝑙
�𝑎𝑎
4𝑙𝑙

cos 2𝜙𝜙𝑛𝑛 + ∑ 𝜖𝜖𝑘𝑘 sin𝜙𝜙𝑛𝑛𝑛𝑛−1
𝑘𝑘=1  � + 1

2
𝜙̇𝜙𝑛𝑛2 + ∑ 𝜙̈𝜙𝑘𝑘 sin  (𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘)𝑛𝑛−1

𝑘𝑘=1  −∑ 𝜙̇𝜙𝑘𝑘2 cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘)𝑛𝑛−1
𝑘𝑘=1  = 𝐶𝐶, (13) 

where 𝐶𝐶 is an integration constant. We notice that the term 1
2
𝜙̇𝜙𝑛𝑛2 in Eq. (13) is proportional to a term for kinetic energy. 

Since the sum of the kinetic energy term and other terms is a constant, we can interpret Eq. (13) as a conservation of 
energy theorem for the 𝑛𝑛th Kapitza pendulum. Correspondingly, we define a potential energy term as 

𝑈𝑈
𝑚𝑚𝑙𝑙2

= 𝑔𝑔
𝑙𝑙

cos𝜙𝜙𝑛𝑛 −
𝑎𝑎𝜔𝜔2

2𝑙𝑙
�𝑎𝑎
4𝑙𝑙

cos 2𝜙𝜙𝑛𝑛 + ∑ 𝜖𝜖𝑘𝑘 sin𝜙𝜙𝑛𝑛𝑛𝑛−1
𝑘𝑘=1  � + ∑ 𝜙̈𝜙𝑘𝑘 sin(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘)𝑛𝑛−1

𝑘𝑘=1 − ∑ 𝜙̇𝜙𝑘𝑘2 cos(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑘𝑘)𝑛𝑛−1
𝑘𝑘=1 . (14)



We can determine whether the equilibrium point is stable by taking the second derivative of 𝑈𝑈 with respect to 𝜙𝜙𝑖𝑖. For 
this case, we want to find the stability condition when the system is close to being in a completely upright position. 
Mathematically, the system would be restricted to 𝜙𝜙𝑛𝑛 = 0 and 𝜙𝜙𝑘𝑘 ≅ 0. We apply our conditions to Eq. (14) and solve 
for 𝜕𝜕2𝑈𝑈 𝜕𝜕𝜙𝜙𝑛𝑛2⁄ > 0 to get the lower bound 

𝜔𝜔 > 1
𝑎𝑎
�𝑔𝑔 − 𝑙𝑙 ∑ (𝜙𝜙𝑘̈𝑘𝜙𝜙𝑘𝑘 + 𝜙𝜙𝑘̇𝑘

2)𝑛𝑛−1
𝑘𝑘=1 .     (15) 

RESULTS AND CONCLUSION 

Given the condition that 𝜙𝜙𝑘𝑘 is around zero, we can run a numerical calculation where -0.34 rad <𝜙𝜙𝑘𝑘< 0.34 rad. 
For the velocities and accelerations, the respective ranges are -π/2<𝜙̇𝜙𝑘𝑘<π/2 and -π/2<𝜙̈𝜙𝑘𝑘<π/2. For simplicity, we let 
𝑎𝑎 = 𝑙𝑙 = 1 m. The minimum angular velocity of the pivot required for a stable equilibrium 𝜔𝜔min is calculated from 
Eq. (15) for various 𝑛𝑛 values, with 1,000 iterations run for each 𝑛𝑛 to represent a wide range of possible configurations. 
The result is depicted in Figs. 2(a-c). While the numerical calculation randomly selected the values for 𝜙𝜙𝑖𝑖, 𝜙𝜙𝚤𝚤̇ , and 𝜙𝜙𝚤𝚤̈ , 
the graph’s three axes show 〈𝜙𝜙〉, 〈𝜙̇𝜙〉, and 〈𝜙̈𝜙〉, which are the values averaged over all pendulums. The lower bound for 
𝜔𝜔 is displayed in color; red means that no stable solution was found with such a configuration.  

 

  
 

 

(a) (b) (c) (d) 

FIGURE 2. Graphs of 𝜔𝜔min for (a) 𝑛𝑛 = 2, (b) 𝑛𝑛 = 8, and (c) 𝑛𝑛 = 16 (c). Red dots indicate that 𝜔𝜔min is an imaginary number. 
(d) The probability of 𝜔𝜔min having a real number solution. 

 
In experimental configurations of the n-chain Kapitza pendulum system where 𝑛𝑛 ≥ 2, such as in [4], the topmost 

pendulum vibrates more vigorously. Still, there is an upper bound to the sum of all 𝛿𝛿𝑖𝑖 in an n-chain Kapitza system. 
What is surprising is that the upper bound in Eq. (11) is independent of 𝑛𝑛. This implies that all 𝛿𝛿𝑖𝑖 have the same phase 
but different magnitudes, which means the magnitudes of the individual fast oscillations change in reaction to 𝑛𝑛 to 
obey the inequality in Eq. (11). The magnitude of all fast oscillations is distributed and increases as one goes up the 
system. Qualitatively, we can consider the inertia associated with the 𝑖𝑖th pendulum. The higher up the n-chain, the 
less mass a given pendulum must support. The differing inertias cause the variation in magnitude of 𝛿𝛿𝑖𝑖. 

We can see from Eq. (15) that for some configurations of 𝜙𝜙, 𝜙̇𝜙, and 𝜙̈𝜙, the lower bound for the pivot frequency is 
imaginary. We interpret the scenario to mean that no 𝜔𝜔 exists that could make the 𝑛𝑛th pendulum stable at the upright 
position. In Figs. 2(a-c), we observe that as 𝑛𝑛 increases, more red dots appear. Since they represent unconditionally 
unstable states, Fig. 2 suggests that as 𝑛𝑛 increases, the likelihood of a stable state decreases. Figure 2(c) shows this 
relationship between 𝑛𝑛 and the probability of finding a stable state. We observe a sharp decline between 𝑛𝑛 = 10 and 
𝑛𝑛 = 20, after which the probability is near zero. In Figs. 2(a) and (b), where 𝑛𝑛 is 2 and 8, we can see that 𝜔𝜔min 
decreases with distance from the origin. This can be explained by considering the stability of an n-chain system in 
terms of the effective potential of the top pendulum. The farther a state deviates from the origin, the more it contributes 
to making 𝜕𝜕2𝑈𝑈 𝜕𝜕𝜙𝜙𝑛𝑛2⁄  positive. This means less contribution from 𝜔𝜔 is required for the system to be in a stable state. 

As shown in Eqs. (11) and (15), the fast oscillation components of an n-chain Kapitza pendulum system have an 
upper bound that is independent of 𝑛𝑛  and hence do not diverge as 𝑛𝑛 → ∞ , and there exists a distribution of 
conditionally stable and absolutely unstable states for certain values of 𝑛𝑛.   
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